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ABSTRACT

In a practical robotic system, it is important to represent and plan sequences of

operations and to be able to choose an efficient sequence from them for a specific

task. During the generation and execution of task plans, different kinds of uncer-

tainty may occur and erroneous states need to be handled to ensure the efficiency

and reliability of the system. In this thesis, we demonstrate a novel approach to task

representation, planning, and error recovery for robotic systems. Our approach to

task planning is based on an AND/OR net representation, which is then mapped to

a Petri net representation of all feasible geometric states and associated feasibility

criteria for net transitions. Task decomposition of robotic assembly plans based on

this representation is performed on the Petri net for robotic assembly tasks, and the

inheritance of properties of liveness, safeness, and reversibility at all levels of de-

composition are explored. This approach provides a framework for robust execution

of tasks through the properties of traceability and viability. Uncertainty in robotic

systems are modeled by local fuzzy variables, fuzzy marking variables, and global

fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties

and reasoning about uncertainty are investigated using fuzzy reasoning structures

built into the net. Two applications of fuzzy Petri nets, robot task sequence plan-

ning and sensor-based error recovery, are explored. In the first application, the

search space for feasible and complete task sequences with correct precedence rela-

tionships is reduced via the use of global fuzzy variables in reasoning about subgoals.

In the second application, sensory verification operations are modeled by mutually

exclusive transitions to reason about local and global fuzzy variables on-line and

automatically select a retry or an alternative error recovery sequence when errors

occur. Task sequencing and task execution with error recovery capability for one

and multiple soft components in robotic systems are investigated.
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INTRODUCTION
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1.1 Motivation

In a practical robotic system, it is important to represent and plan sequences

of operations and to be able to choose an efficient sequence from them for a spe-

cific task. The earliest planning methodologies emerged in the area of artificial

intelligence where domain-independent planning techniques were developed. In a

robotic system, a planning strategy oriented to the characteristics of the system

is often more effective than techniques derived from domain independent methods.

Conventional representation of a system model without constraints may result in a

huge search space for system states and task sequences. During the execution of a

planned task sequence, because of uncertainty associated with the robotic system,

exceptional or erroneous states are often met and thus the sequence may fail. Many

factors may lead to uncertainty, and different kinds of devices in the system, such as

manipulators, sensors, task-oriented mechanisms, human-robot interfaces, and the

working environment may bring incomplete, approximate, or random information.

Because planning is based on the assumption of expected system states, the model

of a system should also carry the capability to represent the fuzzy information and

provide a robust mechanism to detect and recover from an erroneous state.

Robots are used in many industrial applications including manufacturing, as-

sembly, hazardous environments, undersea or space exploration [31][59]. Feasibility,

efficiency, and reliability requirements are necessary for these robotic systems. In as-

sembly, material handling systems, or other manufacturing environments, we should

know the following information:

• The geometric descriptions of all components in the system and all feasible

w
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combinations of components which form groups during the execution of a task

by the system -- A system state is defined to be the set of all current geometric

configurations of components or component groups at a given time point. A

system substate is defined to be a subset of a system state. Any component or

component group is an example of a system substate.

• Each feasible operation which functions on a corresponding substate of this

system -- These feasible operations are the feasible geometric relationships

among components and component groups in the system. For the current

system state, several operations may be enabled. After a feasible operation is

performed on the current state, a new state will be created and a new set of

enabled operations will be available.

• An initial system state and a final system state -- Sometimes, a set of im-

portant intermediate system states, i.e., subgoals, are indicated to search all

feasible sequences more et_ciently. These states may be given by users so that

a smaller number of feasible states are generated during the search process.

Some constraints may be set by relating algorithms so that these subgoals are

followed automatically.

• The feasibility assumptions and the descriptions of the working environment

-- Some operations may be recoverable, i.e., these operations are reversible.

Some operations are not recoverable. To plan all intermediate points for a fea-

sible collision-avoidance path for a robot arm, we need to know the geometric

descriptions of obstacles in the working environment.

There are two methods to describe a robot task sequence. One method directly

uses an operations sequence, which is either a symbolic description or a formal

language description. In a symbolic description, a task sequence is equivalent to a

string of symbols and each symbol represents a corresponding operation, while in a
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formal language description, the set of all feasible task sequences is a specific task

language. Another method is to use a sequence of partially or completely ordered

system states to represent a task sequence. Using this method, we may conceive the

state changes in a task sequence as well as monitor the completeness of an assigned

task. In this research, we combine these two methods together. Before we search

feasible sequences for a task, we first give an efficient and compact representation

for the system and all feasible operations. We propose a novel representation for the

system states as well as the transition criteria from system substates to substates.

This representation can be mapped to and directly use the theory of Petri nets[84,

88, 89] and its applications in modeling and control of manufacturing systems[2]. A

simulation tool[73, 74] is available to verify and simulate a sequence chosen from all

feasible sequences, before this sequence is practically implemented.

To handle the uncertainty in a robotic system and to represent the subgoals

for a global task, we apply the knowledge of fuzzy sets to the representation of the

system. To generate a complete representation for the system and to efficiently plan

all feasible sequences, different kinds of uncertainty should be analyzed and classi-

fied. An approach to fuzzy reasoning embedded into this upgraded representation

is then used to compute enabled operations and reason about system states. This

fuzzy representation can also reduce the search space for feasible task sequences by

defining subgoals for crucial operations.

=_

1.2 Objective of the Research

The objective of this research is to develop an approach to representation and

planning with uncertainty for a general robot assembly or material handling system.

In this research, error recovery with minimum effort in replanning and changing

a system model is also investigated with the representation of fuzzy information.

Representation and planning are based on the geometric descriptions of a robotic

L
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system and its environment. The resulting correct sequences are the output of the

task planner. This planner will be connected to the path planner, trajectory gen-

erator, grasp planner, vision servo system, and other lower level planning systems.

The connections and the coordination among these planners are controlled and su-

pervised on-line by a coordination level. The Petri net representation provides a

good interface between the planning level and the coordination level.

The ability to represent and automatically find an alternative subsequence or

a recovery sequence is very important for the efficiency and robustness of a robotic

system. A robust planner should minimize the probability for replanning in case

an error occurs. We propose a generalized representation which incorporates the

geometric relationships and feasibility among objects or object groups, the subgoals

which are necessary for a correct operations sequence, different error recovery strate-

gies, and an efficient reasoning mechanism for uncertainty. Our fuzzy representation

offers the following advantages when error recovery is needed.

• It may be unnecessary for the system to re-analyze the system states such as

the current state and the initial state or final state, and it may be unnecessary

to replan a recovery sequence as well.

• Choosing an Mternative sequence can maximize the use of task sequences

already generated. A local alternative recovery strategy makes the best use of

identical machines. A global error recovery strategy reduces the probability

for a system to return to the initial state, and increases the probability for the

system to recover from errors and reach the final state.

• For an object containing multiple components of which the properties may

change, when an operation on some of these components causes errors, we

need not discard other components while recovering to a previous state.

In this research, we also want to analyze the properties of a system using our
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representation. This becomes more important when we incorporate more lower level

devices and operations into the higher level representation. The case is similar when

fuzziness is introduced into the system model. Some of the important properties such

as liveness, safeness, and reversibility are discussed.

1.3 Approach

During the course of this research, we generate a high level representation and

then decompose it to lower levels. Task sequence planning and property analysis

are done on different levels of decomposition. Fuzzy sets are then introduced into

this representation, and fuzzy reasoning about uncertainty, planning for subgoals,

and sensor-based error recovery are investigated.

B

P

w

1.3.1 A High Level Representation

The scenarios we use in this research may also be applied to other kinds of

robotic systems. For example, in the scenario in which a robot moves a book on

table A to table B, all operations involved in this scenario can be described as

assembly, disassembly, or IST(Internal State Transition) operations, the three basic

operations in a generic assembly system which we will discuss. The representation

and planning methods for assembly systems may also be used for this example.

We define a subassembly in an assembly system as a feasible combination of

several components. We define an assembly as a special subassembly which is a

substate of the final state, and which does not appear in any intermediate state

or the initial state. We define an object in a robotic system as either a single

component, a subassembly, or an assembly. After investigating a generic robot

assembly system, we conclude that all possible operations appearing during the

time the system is in execution can be classified as three types of basic operations:

assembly operations, disassembly operations, and IST operations. Generally, for
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an assembly operat{on, there is more than one object as the precondition, and one

object as the postcondition. For a disassembly operation, there is one object as the

precondition and more than one object as the postcondition. For an IST operation,

both precondition and postcondition contain one object.

We first check all components in the system and try to find all feasible com-

binations of components, and therefore all feasible objects are generated. This

checking process may be performed by the computer via a use-machine interacting

mode. A system geometric state representation will then be generated. Based on

this representation and all feasible geometric relations among objects, an AND/OR

net representation of the corresponding system will be generated. The generation

of this net is based on the feasibility assumption for each transition in the net. If

some transitions are shown to be infeasible in one direction, a directed AND/OR net

can be used to model the system. A mapping algorithm is shown to transform an

AND/OR net to an ordinary Petri net and a reachability tree of this net from the

initial state to the final state may be created based on an existing algorithm[84, 89].

A data structure for searching all possible sequences and the shortest sequence is

developed with AND/OR nets. 1-boundedness, safeness, liveness, and reversibility

have been proven to be guaranteed for the Petri net mapped from an AND/OR net.

The safeness and 1-boundedness of the Petri net mapped from a directed AND/OR

net are also proven to be guaranteed. The following research is based on the repre-

sentation using AND/OR nets and mapped Petri nets for the system.

1.3.2 Hierarchical Planning Decomposition

The Petri net mapped from an AND/OR net is called a Level 0 Petri Net(PNO).

Each assembly transition in this net can be decomposed to a motion command and

a grasp command. Each disassembly operation can be decomposed to an ungrasp

command and a motion command. An IST operation is more problem-oriented and
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we do not decompose it at this level. Therefore, some transitions in PNO may be

replaced by a subsequence of transitions and a Level I Petri Net(PN1) is thus gen-

erated. The properties of P/v-0, i-boundedness, safeness, liveness, and reversibility,

are shown to be inherited by PN1.

In PN1, we still have not included the lower level objects such as sensors.

Each transition in the net, which corresponds to a specific operation in the robotic

system, requires a plan to control the execution of subtasks. For example, before

the robot performs a motion operation, i.e., to move from an initial point to a final

point, a collision-avoidance path should be planned. Another example is that a

grasp operation needs a grasp plan, i.e., we should choose a collision-free initial

grasp configuration and a final grasp configuration[70]. During the grasp operation,

the robot must be safe in both the initial grasp configuration and the final grasp

configuration. A collision-avoidance path is required for the robot to reach the final

configuration. Also, the grasping should be stable during the transfer motion. The

problem-oriented operation, IST operation, needs a corresponding plan. For motion

operations, two different kinds of motions may be classified and the corresponding

motions are different in the sense of methodologies of accomplishments. Therefore,

in the next level of decomposition, each motion command is decomposed to a free-

motion command and a fine-motion command. The properties of the resultant net

are also verified to be 1-bounded, safe, live, and reversible.

At the next step of decomposition, we add plans as preconditions for all tran-

sitions in the net and add sensors as preconditions for each sensor-based motion

transition. The resulting net still holds the properties which the upper level net

has. For each plan in the net, a strategy is investigated to develop some subnet for

planning to replace this plan, i.e., how plans are generated, which resources are used

for planning, how uncertainties are reduced before planning on-line, and whether

there is any resource conflict during the planning process and the execution process.



U

i

U

In

i

atom

gi

we

Rib

1el

m

lab

dU



If we can represent resource conflicts for task planning in a lower level net, a shortest

sequence planned from the corresponding Petri net will be of the lowest probability

of error occurring.

!

t

1.3.3 Generalized Fuzzy Petri Nets

Because of the necessity to represent and reason about uncertainty within a

robotic system, we propose a definition of the generalized fuzzy Petri net with three

types of fuzzy variables. This definition is used for the following research in planning

under uncertainty and sensor-based error recovery for robotic systems. The theory

of generalized fuzzy Petri nets can also be applied to other kinds of applications

in artificial intelligence, knowledge based systems, and manufacturing. Fuzzy state

representation and reasoning rules with fuzzy sets are also incorporated with fuzzy

Petri nets. Property analysis for some basic cases of system models are performed.

1.3.4 Planning for Subgoals

A planning Petri net usually incorporates a great number of possible task

sequences. When all possible sequences are generated, it still takes a lot of time to

choose from them. Normally, these sequences guarantee the properties of feasibility

because of the feasibility constraints of the representation. However, some important

events or operations, which we will call as subgoals, should be included in each

correct sequence and should satisfy the correct precedence relationship. We define

a complete sequence as a sequence which contains all subgoals, i.e., all important

events. We may require that all possible sequences searched from the Petri net satisfy

the properties of feasibility, completeness, and have correct precedence relationships.

Based on this requirement, we propose a prime number marking algorithm to map

the ordinary Petri net we developed to a fuzzy Petri net with global fuzzy variables,

so that a strong numerical constraint is satisfied during the search for sequences.
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A set of fuzzy reasoning rules are proposed to select an enabled trimsition and

to obtain the fuzzy values of tokens in the output places for this transition. We

notice that the properties of some objects may change. Generally, the properties of

an object can either be the size, such as radius, length, thickness, etc., or the shape,

and other physical properties, or the processing and machining characteristics, of a

component this object contains, or the parameters of the structure of this object,

such as the distance or the geometric relationships among different components

within this object.

Before the process for searching sequences starts, all possible fuzzy values are

generated and stored using the prime number marking algorithm. During the search

process, if a partial sequence meets a fuzzy value which is not in the possible fuzzy

value set, this partial sequence will be discarded and a theorem guarantees this

deletion will not lose any correct sequences. If not discarded, all partial sequences

continue their development until the complete sequences are generated. Through

the implementation of the theorems developed for this research, we found that the

set of correct sequences for an assembly system, where one or more components of

which the properties may change, is a very small portion of all possible sequences.

Therefore, both the storage for saving all these possible sequences and the selection

time for choosing the optimal or near-optimal sequence from the set of correct

sequences are reduced.

r

w

1.3.5 Alternative Error Recovery

During the execution of a selected sequence from the set of correct sequences,

some unexpected errors may occur and the sequence is therefore unexecutable. This

happens because all operatioias in a planned task sequence are ezpected to be success-

ful and the execution of any operation in a sequence is dependent on the successes

of its previous operations. In particular, in a fuzzy Petri net representation of a
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robotic system, all transitions which change the properties of objects are defined to

be key transitions. The marking for each transition is defined as a weighting factor.

All weighting factors for key transitions are ezpected values. Therefore, all fuzzy

values for the output places of certain key transitions are also expected values. If

at some time point, during the implementation of a task sequence, an error occurs,

this error will be propagated throughout the net to the final state and it may be

difficult to check where the error occurs. An error recovery strategy is especially

important for key transitions. If we detect possible errors just after key transitions,

an immediate mutually ezclusive recovery procedure may be followed.

Therefore, for a certain key transition, if we find the output of this transition is

beyond a certain range, we may either retry it, or use a local alternative subsequence,

or recover back to a previous state or the initial state. All the previous transitions

are retired after the corresponding component is replaced, or the parameters of the

structure of an object are changed. The selection among these three directions will

depend on the local fuzzy value of the object. To retain the original representation

of a fuzzy Petri net model for a system, we use a sensor-based error recovery strategy

for all key transitions. After a key transition is fired, a sensor verification procedure

is called to investigate the current state of an object. Then, depending on the sensed

value, the sequence will either retry in the local range, or continue its execution,

or automatically choose a local alternative subsequence to execute, or go back to

a previous state and follow a global alternative sequence to execute. There is a

limit on the number of retries of the local transition. We have developed a method

which automatically decreases the fuzzy value of an object when the sensed value

continues to stay in the range of retry. After a finite number of retries, if the fuzzy

value is still not correct as expected, an alternative local error recovery sequence

will be automatically followed.
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1.4 Contributions

The main contributions of this research are shown as follows:

• We introduce an AND/OR net representation for robotic task sequence plan-

ning. An algorithm is developed to map this AND/OR net representation to

a Petri net. Property analysis is performed on the resulting Petri net. Data

structures for searching all possible operations sequences and the shortest se-

quence are proposed and implemented. A directed AND/OR net representa-

tion is also developed.

• Algorithms are developed to decompose the high level representation of task

sequence planning for generic robotic systems. The inheritance of properties

between different levels of decompositions are investigated based on proven

theorems. Traceability and viability are shown with robust execution of tasks

using this approach.

• We propose a generalized definition of a fuzzy Petri net. This fuzzy Petri net is

shown to represent and reason about uncertainty. Fuzzy state representation

and fuzzy reasoning rules are defined for the net. Three types of fuzzy variables

are discussed. Fuzzy sets are shown to be directly used with fuzzy Petri nets

and fuzzy computations are used for reasoning. Basic cases of property analysis

with fuzzy Petri nets are given.

• Fuzzy Petri nets with global fuzzy variables are used for task sequence plan-

ning. Algorithms for assigning global fuzzy variables to fuzzy Petri nets are

proposed. Fuzzy transition rules for global fuzzy variables are given. Fuzzy

reasoning for global tasks are shown to reduce the search space for all feasible,

complete, and correctly ordered sequences.

w
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• Fuzzy Petri nets with local and global fuzzy variables are used for sensor-based

error recovery for task sequences. Mutually exclusive transitions are proposed

for on-line selection for alternative enabled transitions. Deterministic and

nondeterministic fuzzy Petri nets are discussed. Theorems of error recovery

with fuzzy Petri nets and related algorithms are proposed.

1.5 Thesis Outline

In Chapter 2, we present a literature review of recent research in task planning,

assembly planning, planning under uncertainty, and Petri nets with fuzzy data. A

conclusion of this review relevant to our research is also given.

Chapter 3 and Chapter 4 discuss the methodology of representation for robotic

task sequences without the consideration of uncertainty. Section 3.2 deals with the

AND/OR representation for robotic systems. An algorithm is shown to generate

an AND/OR net from the descriptions of system geometric states. A mapping

algorithm for transforming an AND/OR net to a Petri net is then given in Section

3.3. 1-boundedness, safeness, liveness, and reversibility of the resulting Petri net are

analyzed. In this section, a directed AND/OR net is also defined and the similar

properties are analyzed. In Section 3.4, we present a data structure for searching

all possible sequences and the shortest sequence from the AND/OR net. We give

an example of task sequence planning using AND/OR nets in Section 3.5.

Chapter 4 generalizes the results given in Chapter 3 and introduces a repre-

sentation of a generic robotic assembly system by decomposing the higher level nets.

Section 4.2 gives the definitions for a generic assembly system. Section 4.3 reviews

the AND/OR net representation specially for assembly sequence planning. We then

discuss the decomposition algorithms for Level 1 and Level 2 Petri nets and analyze

the properties for resulting lower level nets in Sections 4.4 and 4.5. The conditions

for the inheritance of properties are discussed. In Section 4.6, a robotic assembly
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system modeled using the methods discussed above is simulated. Section 4.7 gives

a conclusion about the shortest sequence.

Chapter 5 is independent of the other chapters of the thesis, and develops a

novel definition of a fuzzy Petri net(FPN). The results represented in this chapter can

be used for other applications in artificial intelligence, knowledge-based systems, and

manufacturing. The presentation of the following two chapters are based on Chapter

5. Three types of fuzzy variables are proposed for different kinds of uncertainty

modeled with fuzzy Petri nets. State representation and reasoning rules in the FPN

are given in Sections 5.3 and 5.4, respectively. Property analysis is then given for

different conditions of the FPN in Section 5.5. Two examples of the FPN with

different kinds of variables are shown for task planning and robot sensing in the

following two sections.

Chapter 6 uses fuzzy Petri nets for robot task sequence planning. A detailed

discussion on state representation for task sequences is given in Section 6.2. We

show fuzzy sets for modeling system states in Section 6.3. An algorithm for assign-

ing global fuzzy variables is then proposed in Section 6.4. Some theorems about

using global fuzzy variables to search feasible sequences are also given. Section 6.5

generalizes the results in Section 6.4 and a fuzzy representation for a system with

more general characteristics is discussed. Simulation results, especially the compar-

ison of the complexity for searching sequences with ordinary Petri nets, are given in

Section 6.6.

Chapter 7 is an application of FPNs for sensor-based error recovery for robotic

task sequences. Some important definitions are given in Section 7.2. Section 7.3

gives the fuzzy transition rules for global fuzzy variables. In Section 7.4, execution

of plans on the fuzzy Petri net is discussed with the introduction of mutually exclu-

sive transitions. Deterministic and nondeterministic fuzzy Petri nets are discussed
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regarding different characteristics of local fuzzy variables. The issue of error recov-

ery is presented in details in Section 7.5 for different cases. An algorithm for the

execution of a task sequence with sensory verification and error recovery is shown.

We prove the theorems regarding automatic error recovery. An algorithm for gener-

ating an executable FPN is presented in 7.6, followed by the examples using different

error recovery strategies in Section 7.7.

Chapter 8 summarizes the presentation of original contributions in this thesis.

Directions of future research based on the existing results are discussed.

t

w
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CHAPTER 2

LITERATURE REVIEW

B

2.1 Introduction

In this chapter, we briefly review the work relating to our research and in-

vestigate the relationships of these published results with our work. Our research

was originated from a project on the integration of an automated garment handling

system[9, 101,102], which was supported by the Defense Logistics Agency. During

the research on modeling, planning, and software integration on this project, we con-

structed the AND/OR net modeling tool, and this methodology was then applied

to the NASA/CIRSSE space robotic assembly project. The resulting approach to

task decomposition, planning under uncertainty, fuzzy descriptions for objects, state

identification and verification, and error detection and recovery, is based on Petri

nets and fuzzy Petri nets. In this chapter, we review the literature on task planning

and assembly planning, and then show some previous results on the representation

of uncertainty for task planning. A concise review of the research efforts in Petri

nets using fuzzy data is also included.

2.2 Task Planning

Research in robotic planning is closely related to some corresponding areas in

artificial intelligence. Domain-independent planning methodologies have been de-

veloped which can generate sequences of actions to change the initial world model

and make it satisfy the final goal conditions. All possible actions in the sequences

belong to a feasible set of operators which cause changes in the state of the system.

The ability to reason about actions is a core problem to design a planning system.

Domain-independent planners yield planning techniques that are applicable in many

15
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domains with some modifications and provide a general planning capability. A re-

view paper[43] describes the development of classical plan generation systems, the

important problems that have arisen in the design of planning systems, and some

solutions that have been developed in over 30 years of research in this area. Plan-

ning research has identified many issues in the fields of AI including representation,

reasoning, search, learning, sensation and perception, and distributed systems. A

survey on the AI approach to robot planning is given in [76].

Besides the property of generality for domain-independent planning, a gen-

eral planner should also provide representations and methods to include domain-

specific knowledge and heuristics. A number of planning systems corresponding to

this theme have been created, such as EMYCIN[77], NOAH[96], STRIPS[36, 371,

MOLGEN[103, 104], DEVISER[ll4], and SIPE[llS]. These planners are designed

for a general problem solving environment. Most of the input knowledge takes the

form of predicate calculus formulas, and actions are given in the form of trans-

formation rules. Problem solving using these planners requires the capability for

representing, retrieving, and manipulating sets of statements. Thus, extensive com-

puting power for searching and inference in order to solve a reasonably complex

real-world problem is needed for AI planning. Recent systems have overcome some

drawbacks of previous systems, however, current planning systems are still not ro-

bust and efficient enough to operate in complex robot workcells. Therefore, in robot

working environments, and particularly assembly workcells, domain-dependent plan-

ning methods, though possibly lacking generality, are often more effective since they

represent and reason about domain-related constraints directly.

A task planner transforms the task-level specifications into manipulator level

specifications. To carry out this transformation, the task planner must have a de-

scription of the objects being manipulated, the task environment, the robot carrying

out the task, the initial state of the environment, and the desired final goal. The
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output of the task planner would be a robot program to achieve the desired final

state when executed in the specified initial state. Robotic task planning may be

divided into three phases: modeling, task specification, and manipulator program

synthesis[70]. The modeling phase consists of the following information: geometric

description of all objects including robots in the task environment, physical de-

scriptions of all objects, kinematic descriptions of all linkages and descriptions of

characteristic of moving objects such as robots. Task specification corresponds to

sequences of states of the world model, where state is defined to be the configura-

tions of all objects in the system. This is the goal of domain-independent planning

research as well as domain-dependent planning. Our research shown in this the-

sis will focus on planning the sequences of operations which change the geometric

configurations of the system. The manipulation program synthesis stage is to map

task plans to the corresponding manipulation program which is composed of motion

commands, grasp commands, sensing commands, and commands for grasp planning,

motion planning, etc.

Generally, task planning in robotics requires precise models and knowledge

about mechanical and geometric specifications. Research in motion planning, grasp

planning, assembly planning, robot programming and teleprogramming, and sensor-

based manipulation has yielded important results which are closely tied to the plan-

ning problem. A portion of the research in task planning takes the form of robot

programming languages which allow the descriptions of robot tasks as a high-level

language such as AL[83], AML[108], AUTOPASS[66], and MAPLE[28]. Robot pro-

gramming languages can be classified as joint or actuator level languages, manipula-

tor or end-effector level languages, object-level languages, and task-level languages.

Task-level languages, in particular, often require planning capabilities. The progress

made in robot programming and task planning systems in the last twenty years and

the current research trends are discussed in [33].
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2.3 Assembly Planning

One branch of robotics planning research is robot assembly planning. Most

published assembly planning contributions focus on the modeling of the assembly

process, i.e., describing the geometric configurations of the assembly which is con-

structed by single parts and the topological relations among the parts. Another

direction in the research on assembly takes into account the factor of uncertainty,

and therefore sensing operations, the alternative subsequence selection based on

sensory information, sensory verification for uncertain states, and checking for error

states as well as the generation of recovery sequences are combined into the planning

process. We will review the literature in this area in the next section of this chapter.

Bourjault's[6] work on planning was based on an interactive algorithm using

questions about the mating of two parts or multiple parts. The information Bour-

jault used is a list of parts and a network of nodes(parts) and lines(liaisons), where

liaisons define the connection relationships among parts. Bourjault's graph model is

different from Jentsch and Kaden's[55] connection graph model, where three types

of touches between parts are expressed. All valid assembly sequences are gener-

ated algorithmically from a series of rules, which are derived from the answers to

the questions about matings among parts. However, Bourjault's method requires

212(I is the number of liaisons in the network) questions plus a number of subsequent

questions whose existence usually depends on answers to part of the former question

set. De Fazio and Whitney[29] modified the approach that Bourjault has developed

to generate assembly sequences based on the answers to the conditions of liaison

establishments, i.e., the precedence relationship for assembly tasks. The question

set in their approach contains a smaller number of questions than that in Bourjault's

set, and these questions usually obtain more involved answers. Thus, these ques-

tions may cause direct relationships equivalent to those in Bourjault's, and valid

assembly sequences can be generated aigorithmicaily directly from these equivalent

w
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relationships. Compared with Bourjault's method, the improved method requires

2I questions that are answered in a precedence-logical form. Chen[25] transformed

the precedence relations for assembling parts into a pattern-matching problem and

the problem of generation of all possible assembly sequences is formulated as a state

constrained traveling salesman problem. The concept of a pattern matching algo-

rithm is to match liaisons or parts with one of the parts so that current last assembly

operation is obtained. In Chen's work, a mechanism of precedence knowledge acqui-

sition is proposed which will reduce the time in obtaining such knowledge so that

the time for generating sequences is also reduced. This approach results in only I

questions to be answered.

All the above methods to generate possible assembly sequences are based on a

user-computer interactive mode. The user is requested to answer a lot of questions

about the precedence relationships among the liaisons of parts and the correctness

and the completeness[49] of the sequences of operations generated are not guaran-

teed. Homem de Mello and Sanderson[45, 47] used the AND/OR graph to represent

the decomposition process of an assembly based on the property of feasibility. There-

fore, the problem of finding all possible assembly sequences is converted to find all

feasible disassembly operations for an assembly or a subassembly until all subassem-

blies or parts belong to the initial state. A compact representation of all feasible

assembly sequences is then obtained and its correctness and completeness is shown

in [49]. A complete comparison of AND/OR graph representation for assembly se-

quences with other representations and mappings among these representations are

discussed in [48]. Based on the work of AND/OR graph representation for assembly

sequences, Homem de Mello and Sanderson proposed a heuristic search algorithm

for the best sequence, which uses the criteria of maximizing the number of different

sequences and minimizing the execution time through parallel execution of assembly

tasks[50].
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Some researchers concentrated on the constraints among parts inside an as-

sembly to generate all feasible assembly sequences. Morris and Haynes[82] took into

account the geometric constraints during the design of a robot programming system.

Their understanding of geometric constraints is based on the degrees of freedom of

the parts being assembled. When parts are assembled, their degrees of freedom

are reduced. Besides the degrees of freedom constraints, Thomas and Torras[109]

also proposed two other types of constraints, i.e., shape-matching constraints and

non-intersection constraints. These constraints are used to infer assembly configu-

rations for a practical and efficient planner. Vijaykumar and Arbib[115] proposed

a strategy to decompose a sequence of operations and also satisfy the constraints

arising from task and object characteristics. The assembly operations and object

level descriptions are refined to be feature level descriptions using object symme-

tries, then spatial relationships, and at last commands to path planner and grasp

planner. This work was actually not proposing an explicit method for planning but

provided a connection between the high level planner, such as an assembly sequence

planner, and the lower level planners such as a path planner and a grasp planner.

As we will show later in Chapter 4, our decomposition for sequence plans is based

on the decomposition of the representation of plans, which incorporates all possible

sequences, rather than a specific task sequence. Therefore, during the decomposi-

tion process, any conflict or constraints of resources will emerge level by level, so

that the feasible sequences searched from the final representation of decomposition

are guaranteed.

Another example of using constraints for assembly is by Popplestone, Liu, and

Weiss[92]. They used group theory to describe the symmetries of components in a

computational form, so that a unified computational treatment of reasoning about

how parts with multiple contacting features fit together is provided. Using this

approach, when an object is assembled from several parts, the overall symmetry
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can be obtained from the parts whose symmetries are already known. Moreover, a

condition for features to mate is that they have the same symmetry group, so that

the geometric feasibility may be tested by intersecting the constraints corresponding

to each symmetry group of mating features.

2.4 Planning Under Uncertainty

Uncertainty may exist during planning generation and execution. Often uncer-

tainty arises from run-time errors in sensing or control. Another cause of uncertainty

may be one's lack of knowledge of modeling a system or environment. Different ap-

proaches have been proposed to solve the uncertainty problems in different robotics

domains. Most efforts have been focused on compliant motion planning to deal with

uncertainty[97, 105, 117]. Fine motion strategies are also synthesized in the presence

of uncertainty[71]. Other related work is the characterization of manipulation tasks

in terms of randomization[34] and entropy[98]. A preimage backchaining approach

was used to address the problem of planning motion strategies in robot control and

sensing in the presence of uncertainty[60].

When the robot planner generates a task sequence and forwards it to the

robot program synthesizer to output an executable program, the robot manipulator

will then implement this program to reach a desired final goal and also satisfy

some constraints. However, some factors of uncertainty might show up during the

execution of plans, and if no procedure is existing to verify, compute, and solve these

uncertainties, the accumulations of the errors resulting from these uncertainties may

cause a failure, and the sequence of tasks will not be finished. Brooks[7] described

uncertainty for plan execution from three possible sources. The first source is the

positional and repeatability uncertainty of the manipulator, which might be due

to either stochastic or long-term drift effects. The latter case could be solved by

calibration of the manipulator before each round of execution. The second source is
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the objects to be manipulated, since each object or part has its toleranced dimensions

during manufacturing. When a grasp planner generates a planning program, the

numerical representations of parts play an important role, such as lengths, diameters,

and angles. When the system consists of more parts, the problem of the possible

errors for the representations may become more serious. Thirdly, if we assume

the parts were not in the work environment originally, then the initial uncertainties

should be taken into account for the introduction of these parts into the environment

by human hands or a mechanical device.

In our research, we propose an additional type of uncertainty, the uncertainty

of the accomplishment of subgoals. A checking and verification procedure which may

use sensing operations for the quality of the fulfillment of subgoals is investigated

and an algorithm is proposed in Chapter 7. Using this method, we reduce the

propagation of errors for subgoals to a range of tolerance so that the correctness of

the final goal is guaranteed.

In Kamel and Kaufmann's[56] work, two more factors are considered for un-

certainty, one is inaccurate or error-prone sensing information, and another is the

dynamic working environment, which is outside the control of the manipulator. For

the latter case, we could also use sensory verification procedures as we use in the

verification for the fulfillment of subgoals. For inaccurate sensory data, because

we would map it into a fuzzy value during the firing of a fuzzy reasoning rule, the

tolerance of this mapping would reduce the possible inaccuracy of sensory operators.

In Brook's work[7], an explicit block of plan checker was discussed and this

block was separate from the block of robot planner. Plan checker was introduced

to infer the effects of actions and the propagation of errors. Brook's major effort

is to make a program that can automatically determine whether a plan generated

by a robot planner is feasible, and when sensing information is obtained by the

robot controller, the plan checker must have the ability to check and update plans
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for computations which the robot controller will make. Comparing with Brook's

approach, our model of error detection and recovery is combined with the task

planner. Procedures for dealing with uncertainties and errors do not influence the

representation structure for planning, and also the recovery procedure would be

automatically called or an alternative sequence followed.

An example of a robot assembly planning system which handles uncertainties

is Spar[51]. There is a three-level planning hierarchy for Spar, i.e., the operational

level to handle high level operations, the geometric level to couple with geometric

constraints, and the uncertainty-reduction level to deal with uncertainties and errors.

In the lowest level, Spar uses its knowledge about the uncertainty in the world

description to asses the possibility of run-time errors. To achieve this goal, Spar

adds sensors to the plan to reduce uncertainties, and if uncertainty is too large,

precompiled recovery plans would be added. Compared with Spar, the methodology

for our research to decompose a representation of planning considers all possible

operations in assembly, i.e., free motion, fine motion, grasp, and ungrasp.

To handle the uncertainties in execution of plans, we should find a strategy

to monitor the uncertainties and call an error recovery procedure to remedy any

exceptional cases whenever uncertainties are too large to go on the execution of the

normal sequences. A number of approaches to error recovery for assembly workcells

have been discussed in the literature. A repair sequence generation algorithm was

proposed for planning disassembly and repair using the AND/OR graph[46, 99]. In

the approach described in [69], the task execution control function of a workcell

controller is decomposed into three sub-functions which are performed by three

software modules: failure detection, failure diagnosis and failure recovery. Using

Petri nets to model the controller in an automated manufacturing system, four

basic error recovery planning mechanisms to augment the controller are discussed in

[35]: input conditioning, alternate path, backward error recovery, and forward error
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recovery. Some important properties of the augmented controller are guaranteed to

be preserved[123]. Other recent work on error recovery[32] has focussed on the local

physical and geometric constraints related to manipulation tasks.

2.5 Petri Nets with Fuzzy Data

Since C. A. Petri presented his original idea[90], where he formulated the basis

for a theory of communication between asynchronous components of a concurrent

system, a rich body of knowledge concerning both the theoretical and applied do-

mains of Petri nets has been developed. Petri nets have been widely used in modeling

and analyzing flexible manufacturing systems[2, 3, 78, 85, 116, 125], discrete event

systems[26, 58], computer systems[44, 75, 80, 94], knowledge-based systems[8][52],

robot assembly systems[121], as well as other kinds of engineering applications.

This is an efficient abstract and formal information flow model. The Petri net is

characterized by its flexibility and efficiency in modeling and analysis of complex

discrete-event systems. For an extensive survey and overview on Petri nets, refer

to [84, 88, 89]. In a recent article[2], an overview of the Petri net approach to

the modeling, analysis, design, and control of automated manufacturing systems is

presented.

The formal definition for Petri nets and related properties as well as the math-

ematical operations on Petri nets are defined in [2, 84, 88, 89].

There are some examples of using Petri nets to model robotic or assembly

processes so that a sequence of operations is generated based on the Petri net model.

In [120], a plan generating tool for robotic applications using Predicate/Transition

nets[39, 40] is described. This tool is based on modeling STRIPS-like rules by

Pr/T nets and then the T-invariant method of the Pr/T nets is utilized to generate

robot plans. However, this approach still stays in domain-independent formalism

and the applications are limited to blocks world. Zhang[121] described an approach
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to representing simple specific assembly actions using a Petri net and presented an

algorithm for automatic planning of an assembly robot based on the Petri net model

of the assembly. There are several shortcomings in this approach and therefore this

methodology is difficult to generalize. First, the process of constructing a Petri

net model for the assembly is a bottleneck for the algorithm because no systematic

method is proposed to derive topological relations among the parts. Second, the

creation of places and transitions for the Petri net model is problem-specific so

that it could not be generalized to other applications. Third, the algorithm only

addresses the problem of finding one feasible sequence. The approach is not shown

to be correct or complete.

Some types of Petri nets with fuzzy data have been proposed to handle prob-

lems in different applications. Looney[68] modified the usual Petri net to allow fuzzy

rule-based reasoning by propositional logic. The resulting net is considered as a new

type of neural network where the transitions serve as the neurons, and the places

serve as the conditions, so that fuzzy reasoning for knowledge could be performed.

Conditions may be conjuncted and disjuncted in a natural way to allow the firing of

the neurons. Aside from the firing methods in usual Petri net models, in Looney's

Petri net which implements logic implication, when a neuron is fired, the original

token would remain at its precondition and copies would be sent out to all its post-

conditions. One difference in this fuzzy net model from the usual fuzzy rule-based

reasoning is in the representation of certainty or degree-of-belief values of the fuzzy

rules. Chen, Ke, and Chang[24], however, eliminate this difference. In their work, a

structured representation of production rules by fuzzy Petri nets, and a systematic

procedure for supporting fuzzy reasoning, is proposed. Using this approach, each

place represents a proposition. An algorithm is proposed to reason about the degree

of truth of proposition dj, if a degree of truth of another proposition d_ is given in



r 1

[]

m

M

U

ml

n

i

m

m

n

wm

m

m_

i

FMI

mm

ImP

i

U



7

m

26

M,.,

v -

= =

r

the net. If no solution is obtained, then these two propositions have no antecedent-

consequence relationship. Similar work was done by Garg, Ahson, and Gupta[38]

where a fuzzy Petri net was used to represent knowledge and an algorithm was pro-

posed for checking the consistency of a fuzzy knowledge base via a set of reduction

rules that preserve the properties of the FPN.

There are also other similar approaches in extending Petri nets in an impre-

cise or fuzzy sense. Valette, Cardoso, and Dubois[ll2] introduced uncertainty and

imprecision within Petri net based models for application to monitoring of manu-

facturing systems. This approach is based on the association of a fuzzy value with

the time delay for execution of a transition, which results in attaching a fuzzy date

to the transition. The marking of Petri nets with objects and their interpretation

were also introduced in their work[23]. Based on these assumptions, the relations

between Petri nets and logic, the necessity to use Petri nets with objects to repre-

sent uncertainty, and the implementation of Petri nets as rules, were discussed in

[113]. In Tsuji and Matsumoto's work[ll0], an exl_ended Petri net was proposed to

model the vague conditions, and the boundedness, liveness, and reachability for this

model of fuzzy inference engines were analyzed. Another kind of approach modeled

production systems where a numerical Petri net model was proposed[67] and the

correctness, consistency, and completeness of the knowledge base were verified.

2.6 Conclusion of Literature Reviews

In this chapter, we review work on task planning, assembly planning, planning

under uncertainty, and Petri nets with fuzzy data. To author's best knowledge, there

is no previous work that used fuzzy logic to describe constraints and uncertainty in

task planning and no work that applies ordinary or fuzzy Petri nets to task sequence

planning, task decomposition, and evaluation and analysis of robotic systems. Prior

work has emphasized that uncertainty is very important during both planning and
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execution. Using uncertainty for planning, we add sensors to check and verify the

uncertain state of the system, while using uncertainty in execution, we are required

to call error recovery procedures to remedy exceptional cases should errors occur.
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CHAPTER 3

AND/OR NET REPRESENTATION FOR ROBOTIC TASK

SEQUENCE PLANNING

This chapter describes an approach to task sequence planning for a generalized

robotic workcell. Given the descriptions of the objects in this system and all fea-

sible geometric relationships among these objects, an AND/OR net represents the

relationships of all feasible geometric states and associated feasibility criteria for net

transitions. This AND/OR net is mapped into a Petri net which incorporates all

feasible sequences of operations. The resulting Petri net is shown to be 1-bounded

and have guaranteed properties of liveness, safeness, and reversibility. Sequences are

found from the AND/OR net or the reachability tree of the Petri net. Feasibility

criteria for net transitions may be used to generate an extended Petri net repre-

sentation of lower level command sequences. The resulting Petri net representation

may be used for on-line scheduling and control of the system.

=

w

w

3.1 Introduction

Most applications of robotic systems require the generation of a task plan

which specifies the sequence of operations which must be carried out in order to

achieve a stated goal. The generation of this task plan has been approached from

several different perspectives, but in general some set of operations, or actions, and

associated pre-conditions and post-conditions are defined. The representation of

actions and conditions(states) defines the universe of the planning task. Exploring

the feasible sequences of actions which satisfy pre- and post-conditions defines a

search problem which must be solved to identify a feasible, and perhaps optimal,

sequence.

Research on domain-independent planners[36, 37, 77, 96, 118] explored generic

28
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representation and search strategies which yield feasible sequences. Much of this

work has focused on state representation by propositional logic(well-formed for-

mulae). Single-level and hierarchical representation and search have played an

important role. Strictly sequential search(linear planning) versus non-sequential

search(non-linear planning) have also been extensively described.

In robotic systems, a propositional logic state representation often does not

capture the geometric relations required to fully describe the system state. Ap-

proaches to task planning and task-level languages for robotic systems have therefore

concentrated on model-based descriptions of objects, configurations, and geometries

of parts and mechanisms to describe systems states. Such a geometric representa-

tion results in more complex computational requirements for geometric reasoning

about feasibility of operations, and therefore an increased difficulty to search for

feasible sequences.

In previous work[47, 48, 49, 50], we have introduced the AND/OR graph repre-

sentation of assembly plans. The AND/OR graph provides a compact representation

of state relations for the specific domain of assembly. In assembly tasks, state re-

lations are governed by a strict recursive decomposition relation described by the

AND/OR tree. The resulting data structure is compact and efficient to search.

In practice, the complete AND/OR graph may not be generated when the search

process is bounded at execution-time.

In this chapter, we describe an extension of the AND/OR graph from a 'tree'

to a 'net' structure. The resulting AND/OR net is a more general representation of

geometric configurations which lends itself to a compact state description of a more

general robotic system. The AND/OR net representation is described in detail in

the next section.

The AND/OR net is introduced as a compact representation of feasible sys-

tem states and state transitions, and incorporates all feasible operations sequences
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for any given task. As a means to analyze and evaluate these possible operations

sequences, we introduce the AND/OR net to Petri net mapping. Use of this alter-

nate Petri net representation allows us to characterize the resulting system in terms

of well-known properties of liveness, 1-boundedness, safeness, and reversibility of

discrete-event systems. The resulting Petri net also provides a means to construct

a task-level controller for execution of the final operations sequence.

3.2 AND/OR Net Representation

The representation of assembly plans in our previous work is based on an

AND/OR graph[47, 48, 49, 50]. AND/0R graphs have AND-arcs connecting one

initial node to k terminal nodes. The basic definition of an AND/OR graph is:

Definition 3.1 An AND/OR graph is a pair of sets (V, H) in which V is a finite

set, and H is a subset of the Cartesian product Y × (l'I(Y) - {0}), where r](v) is

the set of all subsets of V.

The elements of V are called nodes, and the elements of H are called AND-arcs.

For an AND-arc (A, A), the node A is the initial node, and the nodes in A are the

terminal nodes. The AND-arc (A, A) is incident from A and is incident to the nodes

in A. The AND-arc ()_, A) is said to connect node A to the nodes in A which implies

that the condition of node A can simultaneously cause the results of nodes in A.

In this section, we introduce the AND/OR net representation as a means to

represent generic geometric relations and constraints among objects and devices

in a robotic system. Given a complete geometric description of objects and object

relations, the AND/OR graph described above is extended to represent more general

relationships among objects as system substates. The AND/OR net is defined as

follows:
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Pair-match set F: Given two finite sets E, = {al,a2,...,a,,,}, _2

rn r&

r(_,,_2)- U U {{al,bj}}
i=1 j=l

For example, if E, = {1,2}, 22 = {3, {4,5}}, F(_,, G2) = {{1,3}, {1, {4,5}},

(2, 3}, {2, {4,5}}}.

Definition 3.3 An AND/OR net is a three-tuple (S, A, N) where S is a finite set

_ UU,=,{{s,}})), N C I"(S, S), and Aof states {sx,s=,...,s,}, A C F(S, I'I(S)-({0} '

f"l N = 0, where II(S) is the set of all subsets of S.

The elements of S are called nodes, the elements of A are called AND-arcs,

and the elements of N are called IST-arcs, where IST refers to "Internal State

Transition". The AND-arc {A,¢} is said to connect node _ to the nodes in ¢,

_., C: S. The IST-arc {)h, A2} is said to connect node )_1 to node A2. Both AND-

arcs and IST-arcs are undirected. We introduce IST-arcs because some objects

or subassemblies may change the shape, size, or have relative motions inside the

combination of components. These changes cannot be described by a disassembly

or assembly operation because the set of components are the same before and after

the operation. Therefore, an AND/OR net incorporates three types of operations:

assembly and disassembly operations, which are modeled by AND-arcs, and internal

state change operations, which are modeled by IST-arcs. The representation of

AND/OR nets can generalize the robotic planning problem from the assembly to

moving objects, material handling, or other task-oriented problem.

AND/OR nets and AND/OR graphs both have AND-arcs. At a given time, an

operation can be disjunctively chosen from all feasible operations. They can be used

for representing parallelism. However, there are several differences between these

two representations. First, in an AND/OR graph, there is normally a start node

and some concluding or terminal nodes, while the nodes in an AND/OR net, are not

w
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ordered in this manner. Each node could represent one substate of an initial state

or one substate of a final state. Therefore, an AND/OR net is a more generalized

representation of a robotic system. Second, the arcs in an AND/OR graph are

directed while the arcs in an AND/OR net are bidirectional, which means both

directions may be feasible when we show the information flow or transition flow.

An AND/OR graph contains no cycles, while an AND/OR net has no assumption

of acyclicity. Third, in an AND/OR graph, the initial state can be represented by

a single start node, while, in contrast, the initial state of an AND/OR net may

occupy several nodes in the net. Fourth, there is no arc in an AND/OR graph

which corresponds to the IST-arc in an AND/OR net. Because each arc in an

AND/OR net can be considered bidirectional, the AND/OR graph representation

can be thought of as a special case of the AND/OR net.

3.2.1 AND/OR Net Algorithm

Consider a system which contains M geometric substates, including, objects

of one component, i.e., S_, S], ..., SpX, subassemblies of two components, i.e.,

S_, S_, S 2 and assemblies of n components, S_', S_', . S" where
• ''' P2' "''' "', p.,

p, + _ + ... + p,_ = M. The algorithm for obtaining the AND/OR net from the

geometric state representation is shown below:

Algorithm 3.1 Obtaining the AND/OR net from a system geometric state repre-

sentation.

Input: system geometric state representation.

Output: AND/OR net NA = (S, A, N).
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2. Fori =n to2

For j = 1 to p_

Consider Sj,

i2.1 if there is an S,,(u _ j) which contains the same components as Sj, and there

is no IST between Sj and S_,, add an arc between Sj and S_(IST)in N;

2.2 Find all feasible S_' and S_(kl < i, k2 < i), where S_') and S_ have no common

components, and S_' together with Sb__ contain the same components as those

in Sj, add an AND-arc between Sj and S_', S_ _ in A.

Using this algorithm, we observe that each subassembly of order n may be

further decomposed in 2 "-l - 1 ways. Only those decompositions which are geo-

metrically feasible, i.e., we can find the corresponding set of disassemblies in the

geometric state representation, and show that a collision-free path is available, are

included in the AND/OR net. In addition, objects with internal state changes are

indicated by dark links in the AND/OR net.

Therefore, the nodes in the AND/OR net correspond to all objects, which may

be subassemblies and assemblies, appearing in the geometric states representation.

The AND-arcs represent the feasible decompositions from subassemblies(assemblies)

to a corresponding set of subassemblies. The IST-arcs represent the feasible internal

state transitions from a subassembly(assembly) to another subassembly(assembly).

These two subassemblies(assemblies) are listed in the same column in the geometric

states representation and contain the same number of original components.

An exampleof an AND/OR net definition is shown in Figures 3.1 to 3.3. Figure

3.1 shows a robot which transfers an object on the floor to the surface of a table.

The initial state and final state are presented in Figure 3.1. All feasible geometric

relationships among these objects are shown in the geometric state representation

in Figure 3.2. For simplicity in this example, the floor is not considered a defined

object.
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Robot

(b)

Figure 3.1: Example of a moving task for a robot. (a) Initial state. (b) Final state.
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Figure 3.3: The AND/OR net representation for the example.

The maximum number of steps of generating the AND/OR net is C_ + C_' +

... + C_ = 2'_ - 1, where n is the number of components in the system and C_

indicates the combinations of n. Within each step, we may obtain more than one

configuration of single components or contacting objects. The resulting AND/OR

net state representation is shown in Figure 3.3 and is based on the feasible decom-

positions of subassemblies of order r_ to subassemblies of order no more than n - 1.

In the next sections, we will describe the mapping of this AND/OR net to a Petri

net.

Methods for extracting all possible sequences from the AND/OR graph or

AND/OR tree representation of the system will in general not work for the AND/OR

net. First, cycles may appear in an AND/OR net, and the methods developed in

AND/OR graphs for automatically searching task sequences are no longer valid.

However, the AND/OR net often possesses properties which simplify the represen-

tation and search process. Under many common assumptions, an AND/OR net

possesses the special characteristic of reversibility. In addition, we may consider

AND/OR graphs or AND/OR trees as special cases of AND/OR nets. An algo-

rithm for searching in the AND/OR net is described in Section 3.4.
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3.3 AND/OR Net to Petri Net Mapping

Some definitions and notations of Petri nets are introduced below:

Definition 3.4 A Petri net structure, N, is a four-tuple, N = (P,T,a,/3). P =

{Pl,P2,... ,Pn} is a finite set of places, n >_ O; T = {tl,t2,... ,tin} is a finite set of

transitions, m > O; P I'1 T = 0. c_ C { P × T} and fl C { T × P} are sets of directed

arcs.

M_

Definition 3.5 Marking Iz: Marking # of Petri net N is a mapping from set P to

set A = {0, 1, 2, ..., L} which is a finite set, i.e.,

/_:P_ A,

where _ sets tokens to every place in N. #i =/_(P_) E A indicates the number of

tokens in place p_. # can be in the form:

= (ul,u2,...,g.)r; = ,(pi), P.

Definition 3.6 Marked Petri net M: A Petri net structure N containing a marking

/_ is a marked Petri net which is the following five-tuple,

M =(P,T,a, fl,#).

w

w

Sometimes, for the sake of simplicity, we refer to a marked Petri net as a Petri

net, as shown later in this chapter.

Definition 3.7 Petri net graph: The Petri net graph consists of directed arcs and

two kinds of nodes. In the graph, circle nodes and bar nodes represent places and

transitions respectively. The directed arc, which links the circle node and the bar

node, indicates the relation between place and transition. Marking/z is indicated

by solid dots in circle nodes.
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One important property of a Petri net is the representation of serial and con-

current events and resource constraints. For this research, we use the Generalized

Stochastic Petri Nets(GSPN) software[73, 74] to represent the system and carry out

simulations as well as verify the task sequences.

3.3.1 AND/OR Net to Petri Net Mapping Algorithm

For an undirected arc {)q,)_2} E N in an AND/OR net, the mapping to

elements in a Petri net is defined as a function .T'l, where

m

u
U

i

=

u

m

m

roll

7,({._,,._}) = (._,,t,) U(t,,._,)U(,_,t_)U(t_,._,).

For an AND-arc {,_, _,} E A in an AND/OR net, the mapping to elements in

a Petri net is defined as a function .T'2, where

k k

.r_((:,,¢})= (:_,t,lU U(t,,._i)U U(_,,,t_lU(t_,A), _, e ,/.,.
i=1 i=I

The algori'thm for converting an AND/OR net to the corresponding Petri net

is shown as follows:

Algorithm 3.2 Mapping from an AND/OR net to a Petri net.

Input: AND/OR net NA = (S, A, N).

Output: Petri net Np = (P, T, a, fl).

1. initialize P = T = a = fl = 0, ne = nT = 0;

2. for each set ni E N, ni = {nil, ni2}

begin

add _ transitions t,_r+l, t,_r+2 ,

T = TU{t,,r+x , t,,r+2} ;

nT = nT + 2;

check whether nil, hi2 is in P,

m

m
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if n_l not in P, P = PU{n_x}, np = nl_ + 1;

if hi2 not in P, P = PU{m_}, np = np + 1;

/_ = _U{(t,,r+l,ni2),(t.r+2,nil)};

end

3. for each set ai E A, ai = {a:_, _}

begin

add _ transitions tnr+l, t.r+2,

T = T U{t.r+l, t,,r+_};

nT = nT + 2;

for every ej e {ax} I.J_b_ and {ej}NP = O,

p = PU{ej}, ne = np + 1;

a = aULIj{(ax, t,,r+l), (ej,t-r+2)}, for all ej;

i_ = flUUj{(t,,r+_,ej),(t.r+2,aa)}, for all ej;

end

A Petri net representation for the example in Figure 3.1 is shown in Figure

3.4. The initial marking of one token in places S, R, and T represents the initial

state, i.e., there are one robot, one table, and one object available and they are

geometrically independent. The important properties of the resulting Petri net may

be shown as follows:

Theorem 3.1 The Petri net mapped from an AND/OR net is safe.

Proof: Because the Petri net is mapped from an AND/OR net, we clarify the

meanings of AND-arc and IST-arc. The IST-arc in the AND/OR net corresponds

to the internal geometric state change inside an object. All possible assemblies of

n objects, and all possible subassemblies of m objects are special cases of objects.

The AND-arc in the AND/OR net corresponds to combining the geometric states
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Figure 3.4:

of two or moreobjects.

t2 t6

The Petri net representationfor the example.

SupposeNp = (P, T, a, 8) with initial marking/_. Choose any place pl E P;

_ E R(Np, l_) represents a marking which can be reached from/_. If we could verify

that #'(Pi) < 1 for all possible/_' and i, then the proof is completed.

pl might connect with neighboring places in two ways(Figure 3.5).

Case 1: Corresponding to the internal state change of geometric substates of

a component or a related set of components in the system(Figure 3.5(a)).

Suppose #'(p_) > 2. For the sake of simplicity, we assume/z'(p_) = 2. There

should exist a/_" E R(Nt,,I_) and/_' E R(Np,_") such that/_'(p,) = 2 and/_"(p,) =

1, and/_' is immediately reached from #". Therefore, at the time of marking/_",

#"(pi) = #"(pj) = 1, pj and pi are neighboring places in the Petri net. Because

the Petri net is mapped from the AND/OR net and this case concerns the internal

geometric state change, we conclude that at the time of marking/_", the two feasible

internal states of a single component or a related set of components could appear

simultaneously. The contradiction is thus obtained.

Case 2: Corresponding to the assembly and disassembly relationship among

one subassembly or assembly with a set of other subassemblies or single components
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(a) One neighbor (b) Two or more neighbors

Figure 3.5: The connectedness with pi and its neighboring places.

PJk

in the system.

(i) pi is as shown in Figure 3.5(b).

Also suppose p'(pi) = 2. There should exist a p" such that p'(pi) = 2 and

p"(pi) = 1. Therefore, at the time of/_", td'(Pi) = ld'(pjl) = _"(PJ2) ='"= #"(PJk)

= 1, P"(PJl ), "" ", P"(Pju), "" ", P"(PJk) are combining neighboring geometric states in

the AND/OR net, 1 < u < k. We conclude that at the same time of p", the two

possible combining geometric states, which include exactly the same objects, could

appear simultaneously. A contradiction is thus obtained again.

(ii) pi is in the place of pj. as shown in Figure 3.5(b).

Follow the same procedure as in case 1. We could conclude that at the time

of/_", two possible combining geometric states, which contain at least one common

object, would appear simultaneously. A contradiction is obtained.

Therefore, the safeness of the Petri net mapped from an AND/OR net is

assured.

Q.E.D. []

Corollary 3.1 The Petri net mapped from an AND/OR net is l-bounded.

This corollary is directly derived from Theorem 3.1 because the number of
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tokens in any place cannot exceed 1.

Theorem 3.2 The Petri net mapped from an AND/OR net is live.

Proof: Based on the properties of generating the AND/OR net from the system

geometric state representation, we know that each IST-arc and AND-arc is feasible,

and each transition in the Petri net is feasible if we have tokens in the corresponding

incident places. If we can verify that no matter what marking #' has been reached

from the initial marking #, it is possible to ultimately fire any transition of the net

through some further firing sequence, then the proof is obtained.

Because at any time, the system contains all components and each component

is in a geometric substate. To get tokens for all incident places for any transition

simultaneously, using the property that no common components are existing in these

places at the same time, we can first follow a sequence toget all geometric substates

for single components. Then, we follow two or more distinct sequences to obtain

the tokens in the incident places of the selected transition, respectively. Therefore,

the liveness of the Petri net mapped from an AND/OR net is proven.

Q.E.D. o

Theorem 3.3 The Petri net mapped from an AND/OR net is reversible.

Proof: As shown in the proof of Theorem 3.2, the Petri net is a set of loops according

to the mapping definitions. If we define each pair of transitions in the net as ti and

t_, when p' is reached from p following tits.., tp, we can resume the marking of #

from pl following t_t'p_l.., t'1. Therefore, the initial marking is reachable from all

reachable markings. The Petri net is thus reversible.

Q.E.D. []

The live Petri net guarantees a deadlock-free system. The boundedness prop-

erty ensures that the capacity is not exceeded. And the reversibility implies that the
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system can re-initialize itself, and is important for the automatic recovery from er-

rors and failures. Therefore, if a robotic assembly or handling system is represented

as an AND/OR net, it is not only convenient for the system to generate task plans,

but also the controller will supervise and coordinate the system more efficiently.

This mapped Petri net does not satisfy the property of conservation because

of the geometric characteristics of the system.

3.3.2 Directed AND/OR Net and the Properties of the Mapped Petri

Net

In some practical cases, each operation represented in an AND/OR net is

not reversible. For example, the product generated by some physical assembly

operation cannot be disassembled following the same strategy as assembly. We

define a directed AND/OR net which incorporates both undirected arcs and directed

arcs.

Definition 3.8 A directed AND/OR net is a five-tuple (S, A, A', N, N') where S

t

is a finite set of states {s_,s2,...,st}, A C_F(S, I-I(S)- ({0} UU,=,{{Si}})),

t t

A' c_S× (I"I(S)- - U{{s,}}) U (l'I(s)- {o} - U{{s,}}) × s,
i----I i=1

N c_ r(S,S), N' C_ S x S, and ANA' = 0, A fiN = 0, NfiN' = 0, A'r'IN' = Ib,

A fiN' = 0, and A'f'IN = 0, where I'I(S) is the set of all subsets of S.

A directed AND/OR net may be mapped to a Petri net, by adding one tran-

sition instead of two transitions for directed arcs, with the same direction of that in

the directed AND/OR net, for all directed arcs in the net. Therefore, in the map-

ping algorithm, we add a checking command to see whether the current arc in the

AND/OR net is directed or undirected, before adding the corresponding transitions

and arcs in the Petri net.
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Some properties are not guaranteed in the Petri net mapped from a directed

AND/OR net. Liveness and reversibility are not guaranteed because of the existence

of some directed arcs. To be more accurate, based on the definition of different

levels of liveness[27, 61], the resulting Petri net is strictly L1 - Live, because each

transition in the net can be fired at least once in some firing sequence from the

initial marking #, and some transitions cannot be fired any finite number of times

in any firing sequence. The properties of safeness and thus 1-boundedness of the

directed Petri net are guaranteed.

Lemma 3.1 If a Petri net is safe, when one or more transitions are deleted, the

remaining net still retains the property of safeness.

Proof." We assume the original net is N and the modified net is N'. Suppose we

can find a sequence of transition txt2.., tp in N' such that one place receives more

than one token. Therefore, following the same sequence in N, we can also obtain

the same result. This leads to the contradiction with the property of safeness of

N and thus no such sequence exists. We conclude that N' retains the property of

safeness.

Q.E.D. []

Lemma 3.2 If a Petri net is bounded, when one or more transitions are deleted,

the remaining net still retains the property of boundedness.

=_

tsi

M

I

i

i

i

l

i

d

i

Proof.- The proof strategy is the same as in Lemma 3.1. If we suppose there exists a

sequence to destroy the property of boundedness in N r, we will reach a contradiction

to the known assumption. Therefore, the property of boundedness is inherited in

N' which is generated through deleting some transitions in N.

Q.E.D. []
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Theorem 3.4 The Petri net mapped from a directed AND/OR net is safe.
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Proof: Using Lemma 3.1, we consider the Petri net mapped from a directed

AND/OR net as generated through deleting some transitions in a complete Petri

net which is mapped from an ordinary AND/OR net. Because this complete Petri

net is safe, the directed Petri net is also safe.

Q.E.D. []

Corollary 3.2 The Petri net mapped from a directed AND/OR net is 1-bounded.

This corollary is directly derived from Theorem 3.4 because the number of

tokens in any place cannot exceed 1.

3.4 Data Structure for Searching Sequences in the AND/OR Net

To search feasible sequences from the AND/OR net representation of a robotic

system, an efficient data structure is required. Two possible requirements may be

proposed for practical implementation situations: one is the problem of searching all

possible operations sequences for the given initial state and final state, and another

is the problem of searching the optimal sequence under certain evaluation criteria

such as cost, number of steps, or flexibility. The complexity of the first problem is

much greater than that of the second one.

The search in an AND/OR graph is a recursive procedure which is guaranteed

to terminate under the assumption of acyclicity. To search all possible solution

graphs from the start node to a set of terminal nodes in an AND/OR graph, a

breadth-first search algorithm could be defined. To find the optimal solution graph

with minimum cost, a heuristic search procedure, AO" algorithm[87], was used to

speed up the search. The AO" algorithm consists of two major operations, a top-

down graph expanding procedure and a bottom-up cost revision procedure. The

search algorithm for AND/OR graphs could not be used to search AND/OR nets

because of their different topologies and properties.



46
u

3.4.1 Searching All Possible Sequences

It may not be possible to represent the state of a robotic system by a single

node in the AND/OR net. For example, the initial state SI may consist of a set of k

objects, {O1,02,..., Ok}, where Oi represents either a component, a subassembly,

or an assembly. To find all possible operations sequences, which consist of AND-arcs

and IST-arcs, from the initial object set to the final object set, we first transform

each distributed node set in an AND/OR net to a distinct node in a corresponding

state graph. Our algorithm is mainly divided into two steps:

1. Create a directed state graph, where each node in the graph represents a

feasible system state, and each directed arc points from one node to another and is

marked with a label of a feasible operation.

2. Generate all possible paths from the node which corresponds to the initial

state to the node which represents the final state.

Because the complete algorithm is quite complicated, we only informally dis-

cuss some important ideas related to the data structure inside the algorithm.

To create the state graph, we have a linear sequential structure/: which may

be implemented by an array. Each node in /: represents a system state. Two

pointers, Ptl, which is to indicate the intersecting position of the states which have

been processed and not processed, and Pt2, which is to mark the index of the last

inserted state, are used. Initially, /: consists of only St. If Ptl _ Pt2, and the

current state is not the final state Sf, the set of objects representing this state will

be used to search from the legible-operation-base to find all enabled operations.

Correspondingly, each new state reached by an enabled operation will be compared

with every existing state in Z: to decide whether it should be added to/:. In either

case, a directed'arc marked with the label of this operation will be added to £:. For

each node in/:, the number of nodes it points at will also be recorded. Eventually,

because of the finite number of components in the system,/: will stop developing

m

I

m
m

J

M

l
m

m

R

m

in

lm

m

n

n

m
i

u

m

[]

g



w

u

and all feasible states are incorporated in this graph. The resulting graph is a finite

automaton with one final state.

The complexity of the generation of the state graph depends on the practical

implementation of a robotic system because the comparison of each existing state

with a new state is quite expensive. Also, the same state may be created many

times and at each time the comparison should be performed. Searching in the

feasible-operation-base also adds to the complexity. A binary search strategy or

a heap structure[l] cannot be used here to raise the efficiency of search because

otherwise the arcs in the state graph would be frequently modified and thus costly.

The complexity is f_(n 2 + ran), where n is the number of feasible states in the final

graph and m is the number of feasible operations.

The next step is to find all sequences from/:. For this task, we use a data

structure A to store the intermediate states which are being processed, and these

states point to the corresponding partial sequences which are being developed. This

data structure could be either a queue or a stack, Which corresponds to the breadth-

first and the depth-first search, respectively. The states in A could also be ordered,

which corresponds to a heuristic search to find the smallest cost path. We will

discuss it using another more efficient strategy in the next subsection.

Suppose the enabled operations in the state graph for the initial state St is

tt_, tt_, ..., and tzp. In the first step, we push the corresponding child states of St,

St1, St2, ..., Stp, into A, and make them point to the partial sequences, ttl, tt_, ...,

and ttp. The following iterations will process and delete a state in one end of A. Its

child states are compared with the final state and the results control whether to add

the corresponding enabled operations to the partial sequences. The procedure for

developing a partial sequence continues until (1) a duplicate transition is found for a

partial sequence, in this ease, the partial sequence will be discarded, or (2) the final

state is reached, in this case, the complete sequence will be output or stored. This
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algorithm is guaranteed to stop(& becomes empty) because the feasible operations

and the feasible states are finite. All complete sequences are stored in a set and could

be evaluated or selected after the searching process stops. The complexity for this

type of search and the number of all possible sequences depends on (1) the size and

the configuration of the state graph, (2) the cost of comparing a currently enabled

operation with each operation existing in the corresponding partial sequence. The

storage for the scripts of all possible sequences is also not predictable and therefore

may be large. During the procedure of generating all possible sequences, if we add

some constraints such as the maximum number of operations in a sequence, the

maximum number of sequences we want to generate, the maximum cost for each

sequence, and so on, a reduced set of possible sequences is obtained and search time

and space required may be reduced.
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3.4.2 Searching the Shortest Sequence

In many cases, we wish to search the shortest sequence directly from the

AND/OR net representation rather than to choose from a set of all possible se-

quences. When there is a weight or cost function for each feasible operation defined

a priori, the shortest operations sequence is defined as the sequence from the initial

state to the final state with the lowest cumulative cost. When there are no costs

defined for the operations, the shortest sequence is considered as the sequence with

the fewest number of steps.

We use a methodology similar to Dijkstra[30] for searching the shortest path

from a weighted graph which is based on a greedy strategy. Given two arbitrary

nodes, v and w, in the graph, Dijkstra's algorithm is to find the shortest path from v

to w in O(n 2) time, where n is the number of vertices in the graph. This algorithm

is based on a strategy of generating a search tree which always chooses an edge,

such that the cost from the node on one end of the edge to the starting node is the
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smallest. Eventually the search tree will reach w. If we directly use this algorithm

to search the shortest sequence, the complexity will be fl(n 2 + mn) + G(n 2) =

fl(n 2 + ran), where n is the number of all feasible states and m is the number of all

feasible operations.

In our algorithm, we look for a search tree at the same time as the state

graph is created. Suppose the partial graph we are developing is G, and the partial

search tree is T. Initially, G = T = 0. When the search starts, G = T = {$I}.

The algorithm for searching the shortest path from the AND/OR net is informally

shown as follows. The notations are: (1) S_ represents the current state which is

being processed and Sc_, is one of the child state of S_,_, (2) c(Sj) is the minimum

cost of path from St to Sj. (3) arc(Sj,, Sj2 ) represents the directed arc connecting

from "-qil to Sj2, (4) w(arc(.)) is the cost of the corresponding arc.

= 51; cost(S ,,,) = O;

while S_,,,, # SF(final state) do

(1) for each child state, S_,, of Se,_

if S_,,_,, is in G and > +

delete the arc connecting S_,_, and a node in G and

add arc(S_,,, Sc_,,,,) to G;

if S_,_, is not in G

add S_,,, and arc(S_,,,, S_,,,,) in G;

(2)find a g' E G - T which has a cost of min_j(cost(tl) + w(arc(ti, gj))

from St to it, tiET, gj EG-T;

Put it into T and mark it as S_,,.

This algorithm will stop if the final state is met and the path could be traced

from SF back to St. And the shortest cost from the initial state to all other states

in T will be found in order of increasing cost. The proof of the correctness of our

algorithm is quite straightforward, and we omit the proof here. The complexity is
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q)(n '2 + n'm) where n' is the number of feasible states which will be developed for

G, n t < n, and m is the number of feasible sequences. This complexity is clearly

less than that discussed above.

Using these algorithms for searching, we can generate a state graph for the

AND/OR net example shown in Figure 3.3, and obtain the task sequences required.

In this case, only one possible sequence is available. This sequence could be mapped

to a sequence of transitions in the mapped Petri net. The firings of this sequence

of transitions and the corresponding sequence of markings are shown in Figure 3.6.

Note that the sequence of places in markings are: R, S, T, SR, ST, and RST,

respectively.

3.4.3 Searching Sequences in Resulting Petri Nets

We could also search sequences from the Petri net which is mapped from

the AND/OR net. In this case, the task planning problem maps to a reachability

problem in the Petri net, which is a basic Petri net analysis problem[89]. From the

task sequence planning point of view, we are not only interested in whether a final

state,/_/, can be reached from the initial state,/_i, we also require the sequence used

to reach the final state. In such a reachability tree generated from a Petri net, the

number of leaves in the tree is the number of all possible task sequences. The depth

of the tree is the length of the sequence. The length of the shortest path from the

root to a leak" is the number of operations in the optimal sequence in the sense of

the number of steps. To represent a task sequence from the reachability tree, we

can either show a sequence of transitions, or a sequence of system states. The Petri

net can be used to simulate and verify the sequences selected.

Compared with the search algorithm for all possible operations sequences dis-

cussed for AND/OR nets, the time for creating a state graph and a reachability tree

is the same, while the representation size of the reachability tree is much greater
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(a) Transition f'trcabic:tl

Marking: 111000

Operation: None

t6

Co)Transition f'tre.able:t2, t3

Marking: 001 I00

Operation: Robot grasps solid

(c)Transitionfn_able:t4,t5

Marking:00(X_l

Operation:Robot reachestable

(d) Transition f'weablc: 16

Marking: 100010

Operation: Robot leaves table

Figure 3.6: The sequence of markings and corresponding operations.
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because of many duplicate nodes. However, the feasible operations sequences can

be directly found from the reachability tree. Similar to the discussions on AND/OR

nets, it is also not economical to find an optimal sequence using the method of the

reachability tree.

3.5 Example of Task Sequence planning Using AND/OR nets

Another example of a task sequence plan is provided by the problem of a

robot, two tables, and a book shown in Figure 3.7. An initial state and a desired

final state are mapped to their geometric descriptions. All feasible geometric states

for one object, two objects and three objects are shown in Figure 3.8. For this

problem, we assume the maximum size of the robot gripper is not large enough for

the robot to grasp the book when the book is fully lying on the table. It is thus

necessary to first move the book to the edge of the table and try to pick up the

book from one side. Two cases for the connectedness of the book and the table

are considered. For the connectedness of three objects, the cases are more complex

because of the relative geometric relations between the book and table. When the

book is on the edge of the table and the robot is touching one side of the book, we

ignore the place of the robot relative to the table, i.e., (T1BR)4 and (T2BR)4 may

include two kinds of geometric relations.

From the system geometric states and Algorithm 3.1, we obtain the AND/OR

net representation for the task(Figure 3.9). For simplicity of the figure, the net

is shown as separate subnets, but because of the common nodes in each subnet,

it is really a connected net. We map this AND/OR net to the Petri net(Figure

3.10) following Algorithm 3.2. The description for each operation could be deduced

from the Petri net and the corresponding system geometric states descriptions. By

searching the AND/OR net directly or the reachability tree of this Petri net, we

obtain all possible task sequences. The optimal(shortest) sequence in this case is
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L

Book

_Table I _

Ca)

Book

Robot |_T!N_ 2__7_

(b)

Figure 3.7: A robot moves a book from table 1 to table 2. (a) Initial state. (b)

Final state.
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ONE OBJECT

B

I I

TWO OBJECTS

(B TI) I B

(BT2)I B

I I
I I

(BT2)2 B

. , I l I

THREE OBSECTS

(TIBR) I , B_

(_BR)2 B_R
I I

| I

U_,U

i

i

U, U

('_BR),, U B

('_BR}2 Br_R

U_U

('_BR)4

| I

R_, B

Figure 3.8: System geometric states representation for moving book.
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Figure 3.9: The AND/OR net representation for moving book.
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shown as follows:

1. tlo: the robot moves towards table 1 and touches the book which is

lying on the surface of table 1.

2. tl4: the robot forces the book on table 1 to move to the edge of the

table.

3. t11: the robot leaves the book and table 1.

4. t6: the robot reaches table 1 again and grasps the book towards the

edge of table I.

5. t4: the robot which has grasped the book leaves table 1.

6. /is: the robot moves towards table 2 and makes the book touch the

surface and lie on the edge of table 2.

7. tiT: the robot leaves the book and table 2.

8. t24: the robot touches the book again but the orientation of the

gripper has already been changed.

9. t2s: the robot forces the book to move to the center of the surface of

table 2.

10. t21: the robot leaves the book and table 2 and then goes back to its

original place.

This is the only shortest-path solution which could be found for this problem.

This optimal task sequence is illustrated in Figure 3.11. This sequence is reversible.

3.6 Conclusions
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The AND/OR net is introduced as a tool for representation and reasoning

about geometric constraints in a robotic workcell system. A method for mapping

the AND/OR net to a Petri net is provided. Some properties of this Petri net are

also verified. A directed Petri net is discussed to include more general cases for

modeling a system. We could obtain all possible task sequences by searching from
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the state graph resulting from the AND/OR net, or constructing the reachability

tree from the Petri net. The optimal task sequence could be directly searched from

the AND/OR net without necessarily creating the complete state space. This off-line

planning system has been implemented. The ideas presented here can be applied to

robotic planning problems in manufacturing and non-manufacturing domains.

The selection and evaluation of all feasible task sequences, is an important

dimension of this work and depends on factors such as time, cost, flexibility, or least-

error-possibility. Another extension of this work involves selection and execution of

parallel operations when a chosen sequence is implemented, so that the time is

reduced and resources are used efficiently. The work discussed in this chapter also

leads to approaches to error detection and recovery.
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CHAPTER 4

TASK DECOMPOSITION AND ANALYSIS OF ROBOTIC

ASSEMBLY TASK PLANS USING PETRI NETS

This chapter describes an approach to robotic task sequence planning which decom-

poses tasks into operations sequences for a generic robotic workcell. The approach

provides a framework for robust execution of tasks through properties of: traceability

-- implicit mapping of operations to task representation, and viability -- retaining

multiple paths for execution. Given the descriptions of the objects in this system

and all feasible geometric configurations and relationships among these objects and

combinations of objects, an AND/OR net which describes the relationships of all

feasible geometric states and associated feasibility criteria for net transitions is gen-

erated. This AND/OR net is mapped into a Petri net which incorporates all feasible

sequences of high level operations. The resulting Petri net is then decomposed in a

stepwise manner into lower level Petri nets of which each transition can be directly

implemented by control commands or command sequences based on devices and

objects in the system, or, by lower level planning transitions corresponding to path

planning, grasp planning, fine motion planning, etc. All possible task sequences are

found using an efficient algorithm which first generates all feasible system states. A

shortest sequence may be chosen from the lowest level decomposition and is guar-

anteed to be the shortest sequence output of the hierarchical planning system to

efficiently implement the desired tasks. The property analysis for different levels of

decomposition is also presented, and the inheritance of properties between levels is

defined.
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4.1 Introduction

Assembly sequence planning generates sequences of mating operations among

objects which will be assembled, including both the original single components and

the subassemblies. The AND/OR graph[47] is an efficient way to represent all fea-

sible assembly sequences at this level of task description[48, 49, 100]. For a robotic

assembly system, operations which incorporate active devices such as robots or sen-

sors require a more complete description of feasible tasks and a plan for the execution

sequences of these devices. The resulting plans facilitate real time implementation

and coordination between high level planning and lower level control. In this chapter

we describe a decomposition of high level task sequences using a Petri net repre-

sentation which facilitates the analysis of robustness properties for the resulting

plans.

An assembly task may be represented by the feasible geometric states of ob-

jects and the transitions among those states, and the assembly sequence planner

selects feasible sequences of these states and transitions. When an assembly task

sequence is selected, each task must be further decomposed to generate a lower level

operations sequence. Such a decomposition raises fundamental issues regarding the

properties of the resulting operations sequence. New deadlock situations, conflicts

among resources, and error states may arise in the decomposed sequence which were

not present at the higher level. In this chapter, we describe an approach to assembly

plan decomposition which retains two important properties: (1) traceability _ each

action is traceable to its role in the higher level plan, and (2) viability -- several

paths of actions may be retained and chosen on line. These properties are specifi-

cally intended to support robust ezecution of the task, and overcome difficulties in

resource conflict and error recovery.

In this chapter, we use an AND/OR net[10, 11, 13, 16] to represent task

level sequences and then follow a top-down hierarchical decomposition procedure
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basedon Petri nets to developa more comprehensiverobotic task representation.

We search among feasible sequencesfrom the final net using an efficient search

algorithm. This representationand decompositionprocedure is described in the

following sections.Section4.2describesthe decompositionof operations for a task.

Section4.3summarizesthe AND/OR net representationfor high level tasks,aswell

as the mapping from an AND/OR net to a Petri net. Section 4.4 describesthe

decompositionof commandsor transitions from different assembly or disassembly

operations. In section 4.5, the net is further decomposed based on types of device

motion and sensors. Section 4.6 discusses the simulation results for decompositions

and sequences searched from the nets, and Section 4.7 discusses the conclusions of

this work and directions for future work.

4.2 Representation of a Robotic Assembly System

Consider a generic assembly system composed of n components, Cx, C2, ...,

C,_. Three possible types of components are defined as follows:

Definition 4.1 Active components: An active component has controllable motions

in a defined workspace. It may move other components when combined into a

subassembly or assembly.

Definition 4.2 Passive movable components: A type of passive component. A

passive movable component is defined to be a component which is movable if and

only if it is operated on by some active component.

Definition 4.3 Passive static components: A type of passive component. A passive

static component is fixed in a certain position, and therefore cannot move even if it

is combined with some active component.

Usually, the position and orientation of passive static components are known

prior to the execution of the system, while the position and orientation of passive

E

I

m

i
m

I

!

I

I

m

d

I

I

u

_I

g

I

I



kd

w

w

m

w

63

movable components may be unknown before the system starts and thus may contain

uncertainties. For example, a block on a table is a passive movable component, but

the table is considered as a passive static component. The sets of active, passive

movable, and passive static components are independent and their union is the set

of components in the system.

A component group, {Cq, C_2,..., Ci,,}, in which all components are in con-

tact with each other is called a subassembly, and specifically, a group of components,

which is a desired configuration in the final state and only appears in the final state,

is called an assembly. We define an object in the system as either a component, or a

subassembly, or an assembly. At any given time, the system has some objects and

we define the system assembly state at that time as the set of these objects.

An operation may affect this system assembly state by destroying some objects

and creating some new objects. We assume when an operation is taking place, at

most two objects may be deleted and at most two new objects may be created. In

addition, at the time when objects are being deleted or created, exactly one object

deleted or created may contain one active component. For example, a robot R

is defined to be an active component. After the robot R holding a component A

contacts another component B, two objects, RA(R holds A) and B are deleted and

one new object, RAB, is created. The resulting object, RAB, is called an active

object, if it contains one active component and only passive movable components,

or contains internal states which may be modified.

The internal state of a component or subassembly is defined in terms Of its

properties. A property of a single component or a subassembly may change, or,

the parameters corresponding to the interrelationships of some components or sub-

assemblies within this object may change. For example, if an object O consists of

two components, C1 and C2, and the distance between C1 and C2 is extended, we

say that the parameter of O, in this case, the distance, is changed and a new or
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modified object O' thus takes the place of the old object O.

Based on these characteristics of feasible objects, three types of basic opera-

tions are defined: assembly, disassembly, and Internal State Transition(IST} oper-

ations. We define the precondition of an operation as the objects being destroyed,

and the postcondition of this operation as the new objects being created. For an

assembly operation, the precondition is two objects, 0il and 0i2, and the postcondi-

tion is one object, Oj. For a disassembly operation, the precondition is one object,

Oj, and the postcondition is two objects, Oil and 0i2. For an IST operation, the

precondition is one object, Oi, and the postcondition is another object, Oj.

In Section 4.3, we will introduce an AND/OR net[10, 11, 13, 16] which rep-

resents these operations and states. In this representation, if the precondition or

postcondition of an operation has more than one object, an AND arc is used to

connect the operation with these objects to show the necessary coexistence of these

objects. The OR relationship for choosing a feasible operation from all enabled

operations is represented by several AND arcs or IST arcs from the same set of

nodes. The decomposition of assembly tasks is achieved using a predefined library of

primitive operations. While these operations may vary in detail for different imple-

mentations, they capture the fundamental requirements for assembly task execution.

Section 4.4 describes this decomposition in more detail.

Each assembly operation is decomposed into a sequence of move and combine.

To form an assembly configuration by an active component, a motion operation is

necessary to reach the corresponding object. After motion is performed, a mating

operation combines the objects by establishing a new contact state. The mating

operations include insert, screw, grasp, or put operations.

Similarly, a disassembly operation can be decomposed into a sequence of sep-

arate and move. The move operation here is in a different direction from that in an

assembly operation. Tl_e unmate operation separates objects by destroying contact

m
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relations. The mate and unmate operations are both problem-dependent and their

implementation depends on the descriptions of tasks.

There are different types of [ST operations, and many are problem specific.

In this chapter, we consider only move-with-contact as an example of an IST op-

eration. Move-with-contact changes the internal configuration of a subassembly by

sliding objects along contacting surfaces. The property which changes is the relative

position of parts in the configuration. Sliding an object along a table is an example

of this type of IST operation.

A move operation is further decomposed into a free-move suboperation and a

fine-move suboperation. A free-motion assumes a wide range of workspace, relative

high speed, and no tightly constraining obstacles. A fine-motion moves in a small,

constrained workspace and moves with a relative slow speed and may often involve

compliance or contact motions. A free-motion makes an active object roughly reach

a goal and a fine-motion makes the active object exactly reach a goal. The prece-

dence of free-motion and fine-motion in motion suboperations for an assembly and a

disassembly operation are different. For motion in an assembly operation, the free-

motion precedes the fine-motion, while in a disassembly operation, the fine-motion

precedes the free-motion.

Sensors are necessary to assess the current state of a system during execution,

and a viable planning strategy must incorporate on-line sensor-based decisions. Sen-

sors are used to restore uncertainties on-line and instantiate lower-level plans. In

our work, we construct plans with sensors for (1) state verification, (2) state identi-

fication, and (3) sensor-based control. Sensory state verification and identification

are used to determine system states and parameters and determine the subsequent

task sequence. Sensors are also used in lower-level sensor-based operations which in-

corporate dynamic sensory feedback to achieve adaptive modes of on-line operation.
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In related work[12, ])i, _0, 211, we have shown the use of a fuzzy Petri net represen-

tation to embed fuzzy reasoning rules and incorporate sensory observations into the

on-line task sequence. In all of these cases, the sensor becomes a resource constraint

on the sequence of operations in the system, and the resulting Petri net planning

tools provide a convenient means to represent and reason about these resources.

For most operations, a motion plan is required before the operation is executed.

For sensor-based motion, a plan may specify a mode of sensor-based motion and

constraints, but not an explicit path. In our task representation, the motion plan

is also viewed as a resource and modeled as such in the Petri net representation.

The existence of the plan is therefore an explicit precondition for the execution of

motion.

To sequence the generation of plans as well as the task sequences, a planning

for planning problem occurs, i.e., when to generate a plan for a certain operation

and how to schedule the generations of all plans in the system. One approach is to

generate the plan right before the execution of the operation so that the uncertainty

of the dynamic working environment can be minimized. To reduce the conflict of

resources in the system, we search a shortest sequence from the final Petri net. This

sequence will guarantee a smallest number of resource conflicts.

4.3 AND/OR Net and Petri Net Representation for High Level Tasks

As discussed in the last section, an assembly operation combines several single

components or component groups to a new component group. A disassembly opera-

tion decomposes a component group into a set of single components and component

groups. An IST operation makes an internal state change for a single component or

a component group. The following discussions are based on the representation and

sequencing of these operations.
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_ CeilingCamera(C1)

Two-sgutSubassembly(S2S3)
Robot(R) Holder(H)

Figure 4.1: A strut-triangle assembly system.

4.3.1 AND/OR Net Representation for Assembly Sequences

Geometric states are used to describe the states for all components and feasible

component groups in the system. Each assembly, disassembly, or Internal State

Transition operation can be considered as reaching from one system geometric state

to another geometric state. The system geometric state was defined in [11, 12]:

Definition 4.4 System geometric state: A set of objects which constitute the sys-

tem including single components, subassemblies, or assemblies. Each object has

geometric substate, which represents the corresponding geometric configuration or

relations among the components of the object.

For a strut-triangle assembly system example shown in Figure 4.1, the corre-

sponding system geometric states table is shown in Table 1.

Note that each geometric configuration may either represent a contacting re-

lationship of objects with internal state parameters, or a fixed relationship among

objects. The fixed relationship is a pre-specified relationship among related objects
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Single Objects

R(robot)

H(holder)

Sl(strut 1)

S2(strut 2)

S3(strut 3)

T(table)

Cl(ceiling camera)

C2(arm camera)

Combined Objects

RS1

S1H

RS1H

$2S3T

SIS2S3T

RSIS2S3T

TABLE 1

SYSTEM GEOMETRIC STATES

Type Object External States

active

passive

passive

passive

passive

passive

passlve

passlve

static

movable

movable

movable

static

static

static

position/orientation

position/orientation

position/orientation

position/orientation

position/orientation

position/orientation

position/orientation

position/orientation

Type

active

passive static

active

Object ExternaI States

position/orientation

passive movable

passive movable

active
joint positions
grasp point

Internal States

joint positions(kinematics)

Internal States

joint positions
grasp point

holder slot #fine position in holder

joint positions
grasp point

position/orientation of
$2S3 on table

position/orientation of
S1S2S3 on table

position/orientation of
RS1S2S3 on table
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and the non-fixed relationship may be unknown or uncertain. The subassembly of

an active component and a passive movable component is rigid, for example, the

robot holding a strut, but the grasping position is an internal state variable. The

subassembly of a passive movable component and a passive fixed component may or

may not have a rigid relationship. For example, in Figure 4.1, the subassembly of

5'2 and $3 has a rigid relationship, while T and $2S3(or only 5'1) have a non-rigid

relationship. A state verification and validation procedure(sensing) will be followed

to check and confirm the geometric states for the objects during the execution of the

assembly or disassembly task. The current state of a non-rigid group is an internal

variable.

Each assembly operationmay have a reversible decomposition operation. For

example, the group of T(table), S3(strut 3) and S2(strut 2) represents a non-rigid

combination of the table and two struts, where the two struts have already formed

a subassembly for the triangle configuration. The group R(robot) and Sl(strut 1)

represent a rigid combination of the robot and a strut which shows that the robot

is holding a strut. These two groups could be combined or assembled to generate a

new group of which the robot is touching the assembly of three struts on the table.

This new group can either be decomposed to two original groups, or be decomposed

to two new groups. For a non-rigid group or object, the internal state change may

be defined among all feasible states of this group or object. The system geometric

states table incorporates all feasible geometric state relationships for possible states

of components and component groups in the system.

The AND/OR net[10, 11, 16] was defined in Chapter 3. It is directly derived

from the geometric states table. The nodes in the AND/OR net correspond to all

feasible components and component groups, which in turn correspond to all feasible

configurations in the geometric states table. The arcs in an AND/OR net have two
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S1S2S3T S1H

;1S2S3T RS1H

$2S3T RS1

Figure 4.2: The AND/OR net representation.

types, i.e., AND arcs and IST arcs. The AND arcs represent the feasible com-

binations and decompositions of objects or object groups. The IST arcs represent

the internal state changes for component groups or single components. The OR

mapping indicates the alternate selections for several different operations, i.e., an

component or component group may either follow an IST arc to transfer from one

state to another state, or be decomposed to a set of new components and com-

ponent groups, or be combined with other objects to generate a new component

group. Therefore, the AND/OR net not only represents each operation for assem-

bly or disassembly, but also represents the relationships among several alternative

operations.

The AND/OR net representation for the strut-triangle representation is shown

in Figure 4.2(The internal state variables are not explicitly shown in the figure).

Note that the AND/OR net is from the task level point of view. An AND/OR

net incorporates all feasible assembly/ disassembly/ IST sequences. We can directly

observe an efficient sequence from Figure 4.2, i.e., the robot first reaches S1 which

is held by the holder. Then the robot goes to pick up S1 and leaves the holder.

Afterwards, the robot reaches the subassembly of $2 and $3 which is lying on

the table and assembles the triangle structure. Last, the robot leaves the table and

w
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leaves the strut-triangle on the table. The final state is thus reached. This particular

assembly/ disassembly/ IST task sequence is listed as follows:

1. R, S1H(initial state) ==*,RS1H, // Assembly

2. RS1H ==,. RS1, H, // Disassembly

3. RS1, $2S3T ==* RS1S2S3T, // Assembly

4. RS1S2S3T ==* $1S2S3T, R(final state). // Disassembly

n

I

B

m
I

4.3.2 AND/OR Net to Petri Net Mapping

To implement convenient communications between the task planner and the

execution controller and to clearly simulate and analyze the task sequence, we map

the AND/OR net task level representation to a Petri net[10, 11, 16]. One important

property of a Petri net is the representation of serial and concurrent events and

resource constraints)

A formal definition of Petri nets and related properties, as well as the math-

ematical operations on Petri nets, are defined in [84, 89]. Some definitions and

notations were introduced in Section 3.3. The mapping of the AND/OR net to the

Petri net is described in detail in [10, 11, 16]. For At and )_2 discussed in §3.3.1, tl

and t2 are two new opposite transitions which are added to the Petri net where the

nodes are being directly mapped to places correspondingly.

Each node in the AND/OR net is mapped to a place in the Petri net. All

transitions in the system AND/OR net can occur in either direction based on the

assumptions of reversibility and feasibility. Using this property, we can map each

AND/OR net transition, i.e., an AND arc or IST arc, to two opposite transitions in

the Petri net. Each place in the Petri net represents an individual state even though

some states may represent the same component or component group. Thus the

ZFor our current analysis, we use the Generalized Stochastic Petri Nets(GSPN) software[73, 74]

to represent the system and carry out some simulations as well as verifying the task sequences.
Some properties of the Petri net such as T-invariants. P-invariants and so on, can be obtained
using this software.
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=..2

L

SIS2S3T :R SIH

t2

Figure 4.3: The Petri net, PNO, mapped from the AND/OR net.

Petri net is a complete representation of the system states, which offers advantages

to model both state and operations sequences. We have shown that the following

properties of the resulting Petri net, i.e., safeness, 1-boundedness, liveness, and

reversibility, are guaranteed[10, 11, 16].

For the sake of simplicity, we call the Petri net mapped from an AND/OR

net as a Level 0 Petri net(or PNO) in the following discussions. PNO for the strut-

triangle example is shown in Figure 4.3. The initial state is represented by the initial

marking of the Petri net. Before the operations of the system, the robot is free, strut

1 is "fixed" on the holder and the subassembly of $2 and $3 is lying on the table.

This initial state is shown with a token in place R, S1H, and $2S3T, respectively.

The final state will be represented with one token in place R, one token in place H,

and one token in place S1s2saT. The states of components and component groups

existing at the same time are geometrically independent.
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4.4 Level 1 Petri Net Decomposition

In this section, we define the =high level decomposition of assembly operations

into move _ combine subsequences, and the decomposition of disassembly opera-

tions into separate ---, move subsequences, where combine may refer to grasp or mate

operations in assembly. When replacing each assembly and disassembly transition

in the AND/OR Petri net by a subsequence of move, combine, and separate opera-

tions, we generate a Level 1 Petri Net(PN1) in which some common characteristics

of assembly and disassembly operations may be captured. In this decomposition,

when we perform the property analysis in the resulting net, we can think of it as an

expansion by corresponding subnets, rather than a replacement of transitions.

4.4.1 Decomposition Algorithm: PN0 to PN1

The mapping from PNO to PN1 is the first step of the decomposition for assem-

bly plans. We formally define the decomposition algorithm at this level as follows.

It is assumed that the number of input objects of any assembly operation, and the

number of output objects of any disassembly operation, are both 2.
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Decomposition Algorithm 1: Decomposition of PN0 to PN1 Decompose

a Petri net PNO N = (P,T,a,3) mapped from an AND/OR net, where P =

{p,,/_,...,p,,}, T = {tl,t2,...,t,,}, a C {P x T}, _3 C_ {T × P}, to a lower

level net, PN1.

fori:=l tondo

if ti E {assembly_operations}, {(pi_,t,),(pi_,t,)} C_ a, (ti,p_3) E _ then

{Each assembly operation is decomposed to a move command and a combine

command.}

r C .

T := T- {ti} + {ti,t,} , n := n + 1; ti := t_'; tn := t,';

{Add a new state for Pil after moving, assuming Pil is or contains an active

m

m

ill

m
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component.}

if p[, _ P then

p := P + {p[_ }; m:=m+ 1; p_ := p_'_

end { if };

'/" C C ,:= _- {(p,l,t,),(p,2,t_)}+ {(p,,,t,),(pT_,t,),(p,_,t,)},

:= 8- {(t,,p_3)}+ {(t_,pT,),(t_,p,3)}

end { if };

elsif t_ 6 {disassembly_operations}, (pi_,ti) 6 a, {(ti, pq),(ti,pq)} C_

then

{Each disassembly operation is decomposed to a separate command and a

move command.}

T := T- {ti} + {tl, t_}; n := n + 1; ti := tl; t. := t_;

{Add a new state for Pi2 after moving.}

if P_'2 _ P then

I!
p := P + {pi_}; m := m + 1; p,, := p:'_

end { if };

:= _- {(p,,,t,)} + {(p,,,t_),(p72,tl)};

fits . s 1:= _- {(t_,p_),(t_,p_)} + _ _,p_),(t_,p_),(t_,p_)}

end { elsif }

end { for }.

4.4.2 Analysis

After we obtain PN1, we are interested in the analysis of properties such as

liveness, boundedness, and reversibility of this net. To avoid directly analyzing this

net which is more complicated than the original net, we investigate whether the

properties of the original net are inherited after we perform the decomposition. The

method of applying reduction rules to analyze a large system[62, 84], which reduces
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it to a smaller and simplified system, is helpful to examine the properties of the

resulting system whenweknow the propertiesof the smaller system beforedecom-

position. As an approach to refine the Petri net, Valette[lll] proposeda method

which replacesthe transitions in the net with correspondingsubnets,and guaran-

teesthe resulting net to preserve the properties of liveness and safeness. Suzuki and

Murata[106] generalized the method for stepwise refinement or abstraction of the

Petri net representation, retaining the properties of liveness and boundedness. To

refine or simplify a net more efficiently without the loss of properties, Berthelot pro-

posed a set of transformations[4] which preserves the classical properties in nets. A

decomposition technique was also discussed to split a system into subsystems which

can be analyzed separately[5]. In another approach, reversibility was considered in

net decomposition by Zhou et al.[122].

To analyze the properties of decomposition for our application in robotic sys-

tems, we propose the following theorem which can be used to show that the resul-

tant net retains the properties of liveness, 1-boundedness, safeness, and reversibility.

Partial or similar results can be obtained using the results in [106, 111, 122].

Theorem 4.1 If a place in a Petri net shown in Figure 4.4(a) is replaced by a subnet

shown in 4.4(b), and the original net is live, bounded, safe, and/or reversible, then

the resulting Petri net is also live, bounded, safe, and/or reversible.

Proof: We prove the inheritance of properties of liveness, boundedness, safeness,

and reversibility separately as follows.

Liveness: Based on the assumption, the net containing Figure 4.4(a) is live, i.e., no

matter what marking is reached from an initial marking, it is possible to ultimately

fire any transition of the net by progressing through some further firing sequence.

Any transition t E T can be enabled after a sequence of transition S = ti_ti2 ... ti,.

After p is replaced by the subnet in Figure 4.4(b), we have: (i) If ,5" passes through

p in N, a token will be placed in p via arc (1) or arc (3). Correspondingly, pl or
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# (2)

t 3 t2

(a) (b)

Figure 4.4: Decomposition of a place to a subnet. The net in (a) isN = (P, T, _,/3),

and the net in (b) isN' = (P',T',_',/3').

P2 in N' willget a token. Then, $ willpass through arc (2) or (4) in N. Again

correspondingly, in N', ,9 will not change, or, tl, t2,tlt2,or t2tlis added in the

sequence, so that each transitiont E T'- {tl,t2) can be enabled after a sequence

of transitions.(ii)IfS doesn't pass through p in N, the sequence which make any

transitionin N' enabled except t_ and t2,willbe the same as in N. Moreover, to

enable each transitionin N, p should contain a token at leastonce. Correspondingly,

eitherpl or P2 should contain a token at leastonce. Therefore, tt and t2 are also

enabled when P1 or P2 contains a token. Each transitionin N' isenabled afterfiring

a certain sequence of transitions.The livenessof iV' isguaranteed.

Boundedness: We need to show that forany place in N, the number of tokens does

not exceed k. After p isreplaced by the subnet in Figure 4.4(b),for any sequence

of transitions,.9= tilti2..,ti,,we have: (i)If,Spasses through p, as in the proof of

liveness,for N', the sequence willbe the same, or tlor t2isinserted in the sequence,

or a loop of tlt2or t2tlisinserted.All these willnot change the capacity of tokens

in places of N t.(ii)If,5"does not pass through p, the sequence willbe the same as

in N. Therefore, the property of boundedness isverified.

Safeness: Safeness isa specialcase of boundedness in which the maximum capacity

foreach place is I. Following the same strategyas the proof of boundedness, we can
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also verify the property of safeness of N'.

Reversibility: As in the proof of liveness, we assume a reversible sequence from

any reachable marking to the initial marking is S = ti_ti 2 ... ti,. (i) If this sequence

passes through p, based on the direction of S following (2) or (4), we get an updated

S which is the same as the original sequence, or with tl or t2 added, or with a loop

of tit2 or t2tl added. (ii) If this sequence does not pass through p, S will not be

changed. Moreover, if the reachable marking contains a token in p, then accordingly,

there is a token in pl or p2 and the sequence will also be the same or changed with

tl, t2, tit2 or t2tl added. In any case, the reversibility property in N' is guaranteed.

Q.E.D. o

4.4.3 PN1 for the Example

For the assembly system shown in Figure 4.1, the objects consist of active

devices and passive parts. As described in Table 1, the only active device is the

robot(R). The parts are designated as fixed(static) and movable parts. The fixed

parts are the table(T) and the holder(H). The movable parts are strut i, strut

2, and strut 3. The combine operations for (R, S1) ---* RS1 and (R, S1H) ---*

RS1H are 'grasp', while the combine operations for (S1, $2S3T) --* S1S2S3T and

(RS1, $2S3T) ---* RS1S2S3T are 'mate'.

If we replace each transition in the Petri net shown in Figure 4.3 by associated

move, combine, and separate operations the PN1 net is generated. The resulting

Petri net is shown in Figure 4.5. Using the above theorem, we know that PN1 main-

tains the properties of liveness, safeness, and reversibility. Using a search algorithm

for feasible sequences[16] in a Petri net, a feasible task command sequence to reach

from the initial state to the final state is generated as tl(Move R1 S1, Grasp R1

$1), t3(Move_Comp R1S1 H, Move R1S1 Rl(Temp_Pos)), t6(Move R1S1 $2S3T,

Move_Comp R1S1 $2S3T), tS(UnGrasp R1 $1S2S3T, Move R1 Rl(Init_Pos)). This
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mv(R1,S1S2S3T)

grs(RI,S IS2S3T)

mvcm'(RISI,S2S3T)

IS2S3T

$2S3T

R1

grsCRl,S1)

angrs(R 1,S IS2S3T)

;1S2S3T

mvcm(R1S 1,$2S3T)

mvcm'(RlS 1,H)

rnv(R1,S1) mv(RI,INIT)

R1S1

mv(R IS 1,TEMP)

=

i..d

R1S1

Figure 4.5: Level 1 Petri net, PNI, for the example in Figure 4.1. Each transi-

tion in the net represents an operation. The label indicates the type of operation:

mv(Move), grs(Grasp), ungrs(UnGrasp), mvcm' and mvcm(Compliant Move, in dif-

ferent directions); and the objects involved: Rl(robot 1), Sl(strut 1), INIT(initial

position of robot 1), R1SI(RI&S1 subassembly), H(holder), TEMP(temporary

position of R1S1 in the free space), S2S3T(S2&S3 subassembly on the table),

S1S2S3T(SI&S2_zS3 assembly on the table). The first operand is the movable ob-

ject.
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sequence can be linguistically described as: (1) robot 1 moves to strut 1; (2) robot

1 grasps strut 1; (3) robot 1 holding strut 1 compliantly leaves the holder; (4) robot

1 holding strut 1 reaches the temporary position; (5) robot 1 holding strut I moves

to subassembly $2S3 on the table; (6) robot 1 holding strut 1 compliantly moves to

subassembly $2S3 on the table; (7) robot 1 ungrasps assembly S1S2S3 on the table;

(8) robot 1 moves to the initial position.

t
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z

I
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4.5 Level 2 Petri Net Decomposition

The PN1 shown in Figure 4.5 can be further decomposed to a set of lower

level operations based on the types of motion and the resources required. The

decomposition of motion is represented by expansion of a move transition into free-

motion and fine-motion. The addition of resources required for sensing and planning

is achieved by adding places. In the examples discussed here, places are added to

represent motion plans and sensors. In the example shown in Figure 4.6, an assembly

operation is decomposed into motion and mating operations, with motion plans 'P'

required as preconditions, and a camera, C2, required to control the fine-motion.

4.5.1 Decomposition of Motion to Free-Motion and Fine-Motion

The following algorithm decomposes each motion operation into free-motion

and fine-motion steps. In the resulting Level 2 Petri net, no two places represent the

same state for the same component or group. Because this net can be considered as

replacing some places by corresponding subnets, and PN1 has been shown to have

properties of liveness, safeness, and reversibility, the resulting PN_2 net in Figure 4.7

also has these properties. The formal algorithm to perform this decomposition is

shown as follows:

l

m

I

Z

U

N

I

z

l

I

I

m

I

Decomposition Algorithm 2: Decomposition of Each Motion Command W
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____ tion

--7 fine_motion

Figure 4.6: Decomposition for the AND/OR net to Level 2 Petri net. In the

resulting Petri net, places 'P' are the precondition plans, for the corresponding

motion or mating operations. Place 'C2' is used to indicate the arm camera, which

is used for sensor-based motion.
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mv_free(R1,S 1S2S3T)

mv_fine(R 1,S 1$2S3T)

grs(R 1,S 1$2S3T)

SIS2S3T

mv_fme(R 1,H)

,Sl)

I

M -

m
i-- !

mvcm'(R1S 1,$2S3T)
1,$2S3T)

mvcm'(R1S 1,I-I)

l !

m

mv_f'me(R 1S 1,TEMP)

my free(R 1S1,TEMP)

1"1

mv_f'me(R 1S1,$2S3T)

Irrlv

'1

mv_free(R IS 1,$2S3T)

mv_f'me(R1S 1,H)

m

I

M

R1S1
I

Figure 4.7: Decompositions for Level 2 Petri net, PN$, with expanded motion

operations.
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w
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for j := 1 to n do

r r II

if tj = t_, (pt, t[) 6. a, (ti,p t) 6. _ then

{t[ 1 is a free-motion command and t[ 2 is a fine-motion command.}

T := T- {t_'} + {t_",t_}; n := n + 1; tj := t_'; t,_ := t_2;

if g _ P then

P := P + {P't}; m :=m + 1; p_ := P't

end { if };

a := a - {(pt,t_)} + {(pt,ffil),(P't,t_2)};

r tt ri l r2:= Z- {(t,,p,)} + {(t, ,p,),(t, ,p;')}

end { if };

elsif tj = t_, (p,,t_) 6. a, (tl,p7) 6./_ then

{tl _ is a fine-motion command and tl2 is a free-motion command.}

T := T - {tl} + {tll,t_2}; n := n + 1; tj := tll; t,, := t_2;

if p_Pthen

P := P + {P't}; m :=m + 1; p,, :=P't

end { if };

a := a- {(p,,t_)} + {(p,,t_l),(p_,t_2)};

(t, ,p,)}(t_,p,),- {(t_,p,)}+ {:= fl t ,, n , t2 ,,

end { elsif }

end { for }.

4.5.2 Adding Resource Places to the Net

In a further refinement of the plan, we introduce additional lower level objects

which represent required resources for execution. In these examples, sensors and

plans are introduced as lower-level objects.
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OriginalNet i Added Place

o
Figure 4.8: Adding a place with loop connections to transitions in a Petri net and/or
a place separable with the net.

!

I
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Many transitions may require a plan as a precondition to execution. There are

four kinds of planners existing for this example: free-motion planners, fine-motion

planners, grasp planners, and sensor-based motion planners. The plans are often

implemented on-line because of the uncertain state and the dynamic environment.

Certain fine motions may require a sensor to perform sensor-based motion. In

this example, camera 2 is a shared resource and availability of C2 is represented by

a token in a C2 place. The decomposition is based on the following theorem and

algorithm.

Theorem 4.2 If we add a place, which (1) contains a token, (2) forms loop con-

nections with some transitions, and/or, a separate place without any connection to

a Petri net(Figure 4.8) which has the properties of liveness, boundedness, safeness,

and reversibility, the resulting net also preserves these properties.

Proof: (i) The liveness of a Petri net is determined by firing a sequence of transitions

and the number of tokens received and produced by transitions. When we fire a

sequence of transitions, if this sequence passes through the transitions which have

connections with the specified place, these transitions will not produce different

numbers of tokens for this place or other places as in the original net. If the sequence

does not pass through this place, and/or, a separate place is added to the net, the
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sequence firing will be the same as in the original net. In any case, the liveness will

be inherited by the resulting net. (ii) The boundedness relates to the capacity of

tokens in each place. As we have shown in proof (i), the boundedness of the original

net is also preserved in the resulting net. (iii) Because the token in the place we add

to connect to the original net always contains 1 token, and the number of tokens

in other places will not exceed 1, the resulting net is safe. (iv) When we follow

a reversible sequence to go back to the initial state from any reachable marking,

because the place we add to connect to the net does not influence any transition in

any sequence, the reversibility property is reserved. The case is the same for adding

a separate place.

Q.E.D. 0

The following algorithm formally proposes the decomposition to add PLANs

to all transitions, and a sensor to all sensor-based transitions.

Decomposition Algorithm 3: Add PLANs for All Transitions and Add

Sensors to All Sensor-Based Transitions.

{add plans for all transitions}

for i := t to n do

P := P + {PLAN_}; m := m + 1; p_ := PLAN_; _ := 1

end { for };

{add C2 to all sensor-based transitions}

P := P + {C2); m := m + 1; p,, := C2; #,, := 1;

for i := l to n do

if sensor_based(ti) = TRUE then

:= + {(w,t,)};
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end { if }

end { for };

Based on this theorem, the complete Level 2 Petri net is generated, and the

result is shown in Figure 4.9 for the example. In Figure 4.9, C_° is a place with loop

connections to two fine-motion transitions, and each PLAN place(with a token)

forms a loop connection with the corresponding transition in the original net. We

conclude that the net decomposed is live, 1-bounded, safe, and reversible.

4.5.3 Independence of Plans and Sensors

In the discussion above, the addition of resource places for plans and sensors

assured that planning and sensing could occur independently. In practice, a sens-

ing operation may be required to acquire the state of objects before a plan can be

executed. The augmentation of the Petri net to represent such dependence is more

dependent on specific configurations and devices. The following algorithm defines

a decomposition for an assembly task which requires a sensing operation for each

motion, and a constraint that sensing for the fine-motion requires a free robot hand.

(This situation occurs when a sensor is attached to the hand, and only functions

when the hand is empty.) The following algorithm applies to the Petri net in Figure

4.10.

Decomposition Algorithm 4: Decomposition for Plan-Sensor Dependence.

i
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m

i

m
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m

M
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M

Z: U.

if C2 _ P then

P:=P+{C2};m:=m+I;p,,,=C2;#,_:= 1

end {if}; B

i
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o . mv_free(R 1,S 1$2S3T)

my_free(R1
R1"2

B_m_

Each transition includes /"_.'"'_

1 _ I

I !

a precondition of plan, 'P'.
R1

J

mv

w

mvcm'(R1S 1,S2S3T)

ungrs(R: tS2S3T)

,IS2S3T C2

mvcm'(RlSl,H)

I)

IH

ungrs('R1,S 1)

mvcm(RlS I,H)

mv_fme(R 1S1,TEMP)

mv_fine(R1 S1,H)

mv

R1S1

=

Figure 4.9: Level 2 Petri net, PN2, with a resource place, C2, introduced to model

camera availability. In addition, each move and grasp operation has a resource place,

P, as a precondition.
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then

if C1 _ P then

P := P + {C1}; rn := m + 1; p._ = C1;/z,_ :- 1

end {if};

forj:=l tondo

--- c _ c _ c _ t rl t rtif tj t,, {(p_: t,),(p,_ t,),(p,_ t['),(p,,,t'_2)} C_ a, {(t, ,Pil),(t[2,p,,)} C Z

n := n + 6; t,,-s := plan_path; tn-4 := plan_path; tn-3 :-- plan_path;

t,_-2 := find_view_pos; t,_-i := find_view_pos; t,, := mv_free(R, pi_);

T := T + {t., t.-l, t.-2, t.-z, t.-4, t,,-5);

m := m + 4; pro-3 := VIEW_POS1; p._-2 := VIEW_POS2;

p,,.-1 := R'; p., := FREE_PLAN(R); P := p + {P,.,P,,.-I,P,_-2,p._-3};

I_(PLAN(t[')) := 0;/_(PLAN(t_2)) := 0

a := cr + {(pil,t,,_S),(p.,_3, t._5),(Cl,t,,_2),(pi2,t._2),(p,.,_3, tn_3)} ;

a := a + {(p;,, t,,-4), (P,,,-2, t.-4), (C2, t,,_,), (p,_, t,,_l), (Pro-l, t,,_l) };

a := a + {(R,t._),(p_,t.),(R,t,__3)};

:= B- {(t[',PLAN(t[')),(t[_,PLAN(t[_))};

:= 3+{(t,,-s,P_,),(t.-5,Pm-3),(t_-5,PLAN(t[')),(t,,_2,p__3),(t,,_2,C1)};

/_ := _+{(t,,_2,p_),(t,,_z,p.,_z),(t,,_4,p_,),(t._4,PLAN(t[z)),(t._4,p,,,__)};

:= _ + {(t,,_,,p,,,__),(t,__,,c2), (t,,__,p,_),(t,,_,,R), (t,,,p,,,_,), (t,,__,R),
(t,,-3, p,,,)}

end { if }

end { for }

end.

Applying this to our example, we now assume that to obtain the free-motion

plan for A, camera 1 is required to find the view position of B and then the path
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planning procedure is called to generate a trajectory to move to an approach posi-

tion. To obtain the fine-motion plan, we must first clear the robot gripper on which

the camera is mounted, so that it can freely move to B and use camera 2 which is

mounted on the robot arm to detect the precise position of B. Using the resulting

view position of B, we generate a free-motion plan for the robot to move near B

and view the position of B. Then a fine-motion plan is generated and a fine-motion

path can be followed to mate B by A.

If A is an object containing R, a conflict from the resource, R, occurs and

then a disassembly operation must be performed to the free R from A. After the

sensing operation by the camera on R is finished, A must be reassembled again.

The Petri net representation in Figure 4.10 shows the conflicts of resources as well

as the precedence relationships among the generation of plans and motions. This

subnet can be merged with the Level 2 Petri net in Figure 4.9 to obtain a final Level

2 Petri net shown in Figure 4.11. The decomposition for this example is shown for

the R1S1, $2S3T mating operation.

Figure 4.11 shows the resulting final Petri net. In one possible sequence, the su-

pervising planner could go all the way down to the place R1S1 and fire the plan_path

transition to get a free-motion plan. However, the precise position of $2S3T is not

known because of the non-rigid combination of the table and subassembly $2S3,

and mv_free(R, S2S3T) cannot be fired because the robot is not free. The plan-

ner could generate a sequence to return, get the free robot, and fire find_VPos.

After a token has been put into place VPos, we store this state until a token is

put into R1SI'I to generate the fine-motion plan. At this time, the robot is free.

We then go all the way down to the place R1SI'I again and make the transition

rnv_fine( R1 $1, $2S3T) enabled.

A preferred plan sequences the state identification first, prior to beginning

assembly. This plan can be found from the sequences generated by the the search
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Figure 4.10: Decomposition for plan-sensor dependence.
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mv_free(R1,S 1S2

mv_f'me(R 1,S 1S2S3"I')

\

Rl'2

mv_free(R 1,INIT)

mv_f'me(R 1,S 1)

90

h_

k;

grs(Rl,S 1S2S3T)

ungrs(R S2S3T)

;1H

ungrs(R1,

mvcm'_ mvcm'(R1S1,H)

tS1,S2S3T)

Sl,TEMP)

;1"2

av_finet'R1S1

R1SI'I

i/IV_

m

VPos2

Figure 4.11: The final Petri net.
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algorithm discussed before.

We can find the view position of $2S3T at the very beginning and store this

position, at the same time, we can generate the free motion plan for the free robot,

and then use the arm camera to find the precise position and store it. In this way,

when R1S1 state is reached, we can directly generate both free-motion and fine-

motion plan without the error recovery loop. EXecution of the long loop will be

avoided.

It is quite complex to verify the properties of the final net. However, if we

loosen the definitions of reversibility and add stronger constraints on searching feasi-

ble sequences as described below, we still obtain the properties of liveness, safeness,

and reversibility for the final net through the decomposition theorems described

above.

First, the final net is live. As we see from Figure 4.10, if we have a token

in A, B, and R(if there is no token in R, we can follow an additional sequence to

obtain a token in R), from the results of simulation on GSPN, we could ultimately

get a token in AB. For each PLAN decomposition in the net, we can obtain a

similar result. Therefore, the net is live. Secondly, when we search a new system

state, any place obtaining more than one token will be considered as containing

one token. Therefore, no state will have a marking in any place containing a value

other than 0 or 1. Any sequence of transitions will not destroy the property of

1-boundedness and safeness. Thirdly, to investigate the property of reversibility,

if we ignore the tokens in the places only for planning such as VIEW_POSI(B)

and VIEW_POS2(B), we can consider the net as a reversible net, because once

VIEW_POSI(B) or VIEW_POS2(B) gets a token, it will not lose it. However, as

we showed in the proof of liveness above, if A, B, and R have a token initially(Figure

4.10), a token will be finally obtained by AB, and R will retain its token. The case

is similar for other transitions. The net is thus reversible, if we assume the values in
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some places of the mar]ring are don't care conditions i_or the property of reversibility.

4.6 Simulation Results and Discussions

L .

=

w

L

w

L

Successive decomposition of the Level 0 Petri net using the algorithms dis-

cussed above yields the PN2 shown in Figure 4.11. The search algorithm may be

used on the Petri net at each level to identify feasible sequences. All feasible se-

quences may be obtained for each level and the relationships between the sequences

at different levels can be studied. At the lowest Level 2, there are greater conflicts

and constraints among the shared resources. Normally, we cannot expect a shortest

lower level sequence to be obtained via the decomposition of the shortest sequence

generated from the higher level representation.

We list the practical feasible sequences generated at each level of the Petri net

as follows(we assume no transition is fired more than once):

Level 0. Petri net in Figure 4.3:

The number of feasible states: 5.

The number of feasible sequences: 1.

Feasible sequence: tl t3 t6 t8.

Level 1. Petri net in Figure 4.5:

The number of feasible states: 10.

The number of feasible sequences: 1.

Feasible sequence:

Move(R1, $1);

Grasp(R1, S1);

Move_Comp(R1S1, H);

Move(R1S1, Temp..Pos(R1 $1));

Move(R1S1, S2S3T);

Move_Comp(R1S1, $2S3T);

w
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UnGrasp(Rl, S1S2S3T);

Move(R1, Init._Pos(R1)).

Level 2. Petri net in Figure 4.6(Motion decomposition):

The number of feasible states: 15.

The number of feasible sequences: 1.

Feasible sequence:

Move__Free(R1, App_Pos(H));

Move..Fine(R1, Grasp_Pos(S1));

Grasp(R1, $1);

Move_Comp(R1S1, H);

Move..Fi ne(R 1S 1, Temp..Pos (R 1S 1 ));

Move..Free(R 1S 1, Temp_Pos (R1S 1 ));

Move..Free(R1S 1, App_Pos(S2S3T));

Move..Fine(R1S 1, Ins_Pos(S2S3T));

Move_Comp(R1S1, S2S3T);

UnGrasp(R1, S1S2S3T);

Move_Fine(R1, Init..Pos(R1));

Move_.Free(R1, Init_.Pos(R1)).

Level 2. Petri net in Figure 4.9(Adding C2 and PLANs):

The number of feasible states: 15.

The number of feasible sequences: 1.

Feasible sequence: the same as that in the above decomposition.

Level 2. Petri net in Figure 4.11(Generating PLANs):

The number of feasible states: 142.

The number of feasible sequences: 1.

Feasible sequence:

Find_Pose(S2S3T, C1, Pos(S2S3T));
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Plan_Path(R1, View_Pos(N));

Move..Free(R1, View_Pos(N));

Find_Pose(N, C2, Pos(N));

Move_Free(R1, App_Pos(H));

Move_Fine(R1, Grasp_pos(S1));

Grasp(R1, Sl);

Move_Comp(RlSl, H);

Move..Fine(R1S1, Temp_Pos(R1S1));

Move..Free(R1S1, Temp_Pos(R1S1));

Plan_Path(R1S1, App_Pos(S2S3T));

Move_Free(R1S 1, App_Pos(S2S3T));

Plan_Path(R1S1, Ins_Pos(S2S3T));

Move_Fine(R1S 1, Ins_Pos(S2S3T));

Move_Comp(R1S1, $2S3T);

UnGrasp(R1, S1S2S3T);

Move_Fine(R1, Init_Pos(R1));

Move_Free(R1, Init_Pos(al)).

For most applications, more than one feasible sequence may be generated

and an evaluation and selection strategy is used to choose among them. Normally,

searching sequences from higher level representations may be performed to verify

the correctness of decomposition and the final net is searched to generate a final

task sequence.

The assumption of firing any transition at most once is useful to constrain

the creation of the shortest sequences. If, under this assumption, we cannot reach

the final state, a looser assumption of firing each transition at most twice could

be introduced. Alternatively, the shortest sequence which has the least conflict on

resources and the least probability of firing any error recovery subsequence could be
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used.

As can be seen from the simulation results, the shortest sequence from the

lowest level of decomposition of the representation of task sequences could not be

obtained via the decomposition of preferred higher level sequences directly. An

intuitive observation of this fact is shown where a sensor is used on the active

component, the robot. In this case, a resource conflict appears. For example, when

a robot is required to pick up a strut on a table and transfer it to a holder, the

robot first moves to and near the strut on the table. The grasp planner for the

robot might require the exact position of the strut, and if a camera is mounted on

the robot arm, it could directly perform sensing operations and no error recovery

procedure is involved. If we use the decomposition on the representation rather than

on the sequences, a shortest sequence will be guaranteed to be found on the final

stage decomposition and the conflicts on resources will be automatically reduced to

a minimum.

Another issue we may want to consider is whether our representation includes

the possibility of parallel operations or concurrency. Two types of concurrency,

parallel and sequential mutual exclusions for Petri net modeling of manufacturing

systems with shared resources are discussed in [124]. In Figure 4.11, we can find: (1)

the transitions, find_vPos(connected with C1) and rnv_free(RI,S1) are two parallel

operations without resource conflict; (2) after find_vPos(same as above) is fired,

plan_path(connected with FREE_PLAN(R)) and mv_free(R1,SI) are two parallel

mutually exclusive operations with shared resource R_l; (3) if there are two tokens

in S12S3T and SIH with different colors, sequential mutual exclusions with shared

resource R1 appear. In this case, after R1 moves to one S$S3T and uses its camera

to sense the insertion position of the subassembly S_$3, two choices for the following

execution should be selected. The first choice may be continuing to grasp an S1 on

a holder H and complete the assembly of S1S#S3. Another choice may be to sense
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another $2S3 on the second table. The resource conflict for t:1.1 also appears at

this time. Notice in this discussion the property of 1-boundedness is generalized to

k-boundedness, where k = 2.

-F

4.7 Conclusions

In the above simulations, it is assumed that no transition will be fired more

than one time. In this example, the number of sequences generated is 1 for all

the decomposition levels. This is because most transitions in the Petri net for this

example are essential. The probability of selecting alternative partial sequences or

transitions is therefore very small. If we suppose some transitions can be fired two

or more times, the simulations show that the number of feasible sequences will be

dramatically increased and it will be very costly to store all sequences and compare

different sequences among them. Under any condition, the sequence found for the

final net for the example is the shortest and thus most economical to implement.

The verification of property inheritance during decompositions for assembly

tasks has been developed. We have shown that the Petri net mapped from the

AND/OR net guarantees safeness, 1-boundedness, liveness, and reversibility. Based

on these conditions, the properties of all lower levels of net representations are

discussed. Because those properties are not lost during specific decompositions, we

can guarantee a deadlock-free and fault tolerant system.

An important topic for continued research is how to make the property of

reversibility on the final net stronger. If all places in the final net are taken into

account, can the initial state be reached when an error occurs? A related topic is to

guarantee state reservations for all waiting components or component groups during

recovery.

n
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..... CHAPTER 5

REPRESENTATION AND ANALYSIS OF UNCERTAINTY USING

FUZZY PETRI NETS

This chapter proposes a generalized definition of the fuzzy Petri net(FPN) and the

reasoning structures of transitions in the FPN. Three types of fuzzy variables: lo-

ca/fuzzy variables, fuzzy marking variableS, and global fuzzy variables, are used to

model uncertainty based on different aspects of fuzzy information. A fuzzy Petri net

is Used to model the incomplete, Uncertaln, and _approximate information associated

with firing of transitions and changing of states in robotics and manufacturing sys-

tems. Using FPNs to model a system, a fuzzy reasoning strategy may be used to

infer new fuzzy values in output places after the corresponding enabled transition

is firedl A global fuzzy variable is used to sequence operations with key precedence

relations for a manufacturing system. A local fuzzy variable is used to represent

the uncertainty in local configuration variables of the system and may be used to

control on-line reasoning about sensor-based execution. Several basic types of fuzzy

Petri nets are analyzed, and the necessary and/or sufficient conditions of safeness,

liveness, and reversibility are given. An example of modeling sensory transitions in

a robotic system is discussed to illustrate reasoning about input local fuzzy variables

to obtain mutually exclusive tokens in the output places.

5.1 Introduction

While Petri nets[84, 89] have been widely used to model computer systems[79,

81, 93], manufacturing systems[2, 116, 125], robotic systems[10, 11, 12, 13, 14, 15],

knowledge-based systems[8, 52], and other kinds of engineering applications, they

may be unable to model incomplete, uncertain, and approximate information or

states. An operation and its preconditions and postconditions in a manufacturing
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system can be represented by a transition and its input places and output places

in a Petri net model. Each token in some place of an ordinary Petri net is used

to represent an entity, such as an object or an abstract piece of information. How-

ever, a real system may contain objects which require associated variables to fully

represent an object state. In addition, the values of those associated variables and

the occurrence of the event itself may be uncertain. In such a system the decisions

which choose from enabled transitions as well as the generation of a next-step state

are based on these approximate descriptions of objects.

Because of the necessity of modeling and representation of lower level oper-

ations and objects in a robot system[15, 19], ordinary Petri nets are found not

sufficient to represent uncertainty and approximate information. The uncertainty

in a robotic system may occur due to many factors during the execution of a planned

sequence or program. When an operation such as 'the gripper A grasps the object

B', is modeled by a transition ti in a Petri net N, one kind of uncertainty within

this grasping operation is the geometric uncertainty in the coordinate of the grasp

position or the contacting position of the gripper with the object. Because this

position is important for the succeeding operations of the robot gripper such as mo-

tion, force control, and assembly, we need to represent uncertain information in the

output place which shows the result of the robotic grasp operation. Another kind of

uncertainty within this operation is the uncertainty of the success of this operation,

and the uncertainty of degree completion for the whole task of the robotic system,

such as assembling a complete set of objects in a certain configuration or reaching

a final system state.

Based on the above discussions, a fuzzy Petri net may be used to describe the

operations and conditions with uncertainty. Uncertain states are associated with

objects, and transitions are used to model fuzzy operations such that the input

variables of transitions will be reasoned approximately and efficiently rather than
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precisely. This approximation or uncertainty is propagatedalong the net sothat a

predefined transition sequencemay be followedas desired,or, if errorsaccumulate,

the operations sequenceshouldbe stoppedso that the error canbe detectedby the

system monitor and the correct recoverysequencemay be followed to recover to a

correct system state. Basedon extensionsto the theory of ordinary Petri nets, a

definition of the fuzzy Petri net and the associatedembeddedreasoningstructure

was presented in [17, 18, 22]. This definition was used to model a sensor-based

robotic systemwhich incorporatesreactive,uncertain, and dynamic properties.

Oneexampleof the utility of using fuzzy conceptsto deal with information is

found in knowledgebasedsystemswith uncertainty. When this type of system is

modeledby Petri nets, the assumptionof tokenvaluesin the net to be0 or 1, is not

sufficient to describethe reasoningprocessor to representthe degreeof uncertainty

of facts. An example for robotic systemsis basedon our observationsthat the

properties of someobjects in an assemblyor material handling system may be

changed[12,14],sothat the sameplacemay contain different kinds of tokensduring

different processingtimes. The propertiesof objects may be physical or geometric

characteristicswhichareparameterizedto definethe objects. In this case,it is hard

to use the samecrisp valueto representthe tokens in different processingstates.

Sinceits emergencein 1965,fuzzy sets[119]havebeenapplied in many aspects

of engineeringsystems,decisionsystems,medicalsystems,industry, transportation,

and other applications. Numerouspapers have been published in all aspectsof

the theory of fuzzy sets,fuzzy mathematics,and their applications. Our reasoning

strategy in fuzzy Petri nets is basedon the the theory of fuzzy logic, and the firing

of transitions is equivalent to the operationson membership functions in a certain

universe of discourse. A membership function gA for a fuzzy set A is defined by

gA: X ---* [0, 1], where a distribution of membership grades for each element in a

universe of discourse is given. A fuzzy singleton is defined as a membership function
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in a universe of discourse, of which the membership grades of all elements are 0s,

except one and only one element, z, of which the membership grade is 1. We mark

the fuzzy value of this membership function as z.

In this chapter, we propose a generalized definition of a fuzzy Petri net and a

complete reasoning structure associated with a transition in the net. This definition

can be used in many applications of FPNs such as sequencing, planning, reasoning

about uncertainty, process control, and knowledge inference. Two kinds of important

planning strategies, off-line sequencing for task sequences, and on-line sensing and

reactively reasoning about firing sequences, are shown to be effectively solvable by

FPNs. We use local fuzzy variables to model the information which locally affects an

operation, and we use fuzzy marking variables to represent the state of the system.

The main differences between an ordinary Petri net and a fuzzy Petri net are the

fuzzy values associated with places and tokens, and the reasoning rules which govern

the firing of transitions. For an ordinary Petri net, a transition is fired if all input

places contain at least one token. For a fuzzy Petri net, the condition of firing is

also based on the local fuzzy variables associated with input places. Using a fuzzy

Petri net to represent a robotic or manufacturing system, we are able to handle

approximate information or uncertainty in the system. The reasoning about this

information is incorporated into the firing rules of transitions.

In the definition of a fuzzy Petri net, local fuzzy variables, fuzzy marking

variables, and global fuzzy variables were defined as different fuzzy information

carried through the net. In [12, 20], global fuzzy variables were used to model

the degree of completion of the robotic task so that an operations sequence could

be planned off-line while searching in the fuzzy Petri net model. Compared with

the strategy used in ordinary Petri nets, computational time and space are saved

because when the order of key transitions are given, all planned sequences should

imply this order. Therefore, a correct sequence is defined as a feasible, complete,



mid

IB

m

U

IB

Irm

u

m

im

m
111

m

I

z
N

m

mBII

m

=_

ill

w

m

lira

I

tl

L_

u



i_ 101

L _

m

=
m

==

m

w

5

and correctly ordered sequence. Any sequence which fails in satisfying this definition

is discarded during the off-line searching process. In [14, 21], local fuzzy variables

and global fuzzy variables are used simultaneously to model sensor-based robot task

sequence planning and the execution of operations involving the use of sensory data.

During the execution of a robot operations sequence, sensory operations' can detect

the partial result of some key operations on-line and the accumulation of errors will

cause a local error recovery sequence or a global error recovery sequence. The local

fuzzy variables decide the choice of error recovery strategy.

Previous work on predicate/transition nets has described approaches to han-

dling predicate related expressions[39, 42]. Tokens in predicate/transition nets can

be structured objects carrying values, and transition firing can be controlled by im-

posing conditions on the token values. Predicate/transition nets have been used for

the management of expert systems, analysis in database systems, and many other ap-

plications. Research on colored Petri nets[54] reports related results though enabling

limited reasoning capacity. The major difference between the predicate/transition

net or the colored Petri net and the fuzzy Petri net is that a fuzzy Petri net can

represent more generalized data using fuzzy numbers and fuzzy reasoning functions.

The results of firing on some transition will depend not only on the input values,

but also on a reasoning process built in the transitions. The transition firing may

depend on the local fuzzy variable or the global marking based on different appli-

cations. The strategy of property analysis on predicate/transition nets thus cannot

be directly applied to the fuzzy Petri net.

Investigation of the properties of fuzzy Petri nets is very important for perfor-

mance evaluation of a system being modeled. Reachability is a fundamental problem

in the research on ordinary Petri nets. The reachability problem on fuzzy Petri nets

is also defined on a feasible reachable set from an initial state. The reachability

problem can influence other properties such as liveness, safeness, and reversibility.
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Safeness of fuzzy Petri nets is defined under the assumption that no more than one

copy of a single object appears i n the system. Liveness of a fuzzy Petri net implies

that the reasoning process or the execution process can continue when the accumula-

tion of errors is still within a range of tolerance, and when errors go over a threshold,

an alternative sequence can be chosen in place of the original sequence. Reversibility

implies that at any time if errors are too large, a home state is reachable.

The discussions on fuzzy Petri nets in this chapter are arranged as follows: In

Section 5.2, the fuzzy Petri net definition is introduced and some components of this

definition are explained. A system state represented by fuzzy information is then

discussed in Section 5.3. Section 5.4 shows reasoning rules in the FPN. Section 5.5

gives analysis for some basic cases. FPNs for sequencing and FPNs for sensing are

discussed in Sections 5.6 and 5.7, respectively. In Section 5.7, sensing operations

are modeled as mutually exclusive transitions in a fuzzy Petri net and therefore

reasoning on sensory data can be performed in these transitions. The conclusions

are given in the last section.
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5.2 Fuzzy Petri Nets

The definition of the generalized fuzzy Petri net is shown as follows[17, 18]:

Definition 5.1 A fuzzy Petri net is formally defined as an 8-tuple:

FPN = (P, T, Qt, _, _, m/, rn_, _1),

where

I) P = {pl, p2, ..., p,} is a finite set of places, n > O.

_o) T = {tl, t2, ..., t,,,} is a finite set of transitions, m > O. P f] T = 0.

3) Qt = {ql, q2, ..., q_} is a finite set of state tokens, l > O.

_) a C {P x T} is the input function, a set of directed arcs from places to

transitions. We call each pi where (pi, tj) E _ as an input place of tj.
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b

5) 13 C_ { T × P} is the output function, a set of directed arcs from transitions

to places. We call each pi where (tj, pi) E/3 as an output place of tj.

6) rnl : P --_ {(p,_)} assigns p, the value of a 2-tuple, (p,_), where p repre-

• sents the local .fuzzy variable and _ represents the .fuzzy marking variable.

7) m,: Q, ---* {!,.Ji(ki, o'k,), C} is a mapping from a token to a union of 2-tuples

of k_ and the kith global .fuzzy variable, ak_, or, to a constant, C, which indicates

no global fuzzy variable is attached to the token, o'/,, is a membership function in

a universe of discourse.

8) #I: T _ {.fl, .f2,..., 'f_} is an association function, a mapping from transi-

tions to corresponding reasoning.functions. A reasoning function .fi maps variables

associated with input places and a set of tokens to variables associated with output

places and another set of tokens.

If we denote the reasoning function for a transition ti as fi, firing of ti when it

is enabled will map (p, Lo)from all input places to all output places and assign a to

output tokens, fi has at most three kinds of rules for mapping p, _, and o'. They are

written as rp, r¢, and r_, respectively. These rules may or may not be independent,

and after firing ti, the original (p, _) may or may not stay in input places of ti.

If a place pi represents an object Oi, then the local fuzzy variable associated

with it can be represented as p(pi); the fuzzy marking variable associated with it can

be represented as _0(pi); and the kith global fuzzy variable within this place can be

represented as o'k,(q./), where qi occupies pi in the current state. In this chapter, we

assume p(pi), _(pi), and ak, (qj) are independent, i.e., one variable cannot be inferred

from any of two others. When the fuzzy Petri net model is generated, we may assign

a priori local fuzzy variables to all places. Thus, even though a place contains no

token, the object it represents still has a local fuzzy variable. If we consider the

three types of variables for a set of places, PJl, PJ2, "" ", PJ,., we can write them as

P(Pj,,Pj,,...,Pj.) = ,P(Pj.))-
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o(pj,,vj,,..., = (0(vj,), ••, o(vj.)).

crk, (qj; , qj;, . . . , qj- ) = (_l,, (qJI )' crk, (qi; ), " . . , crk, (qJ" ) ),

where qjl, qj_, ..., qs" occupy p.h, PJ2, ..., PJ,,, respectively.

Pictorially, each place Pi is represented by a circle with "pi" and a label which

indicates the object pi represents attached to it, and each transition tj is represented

by a rectangle with "tj" and "f:" attached to it. If (pi, t_) E a, there is a directed

arc from Pi to tj. If (tj,pi) E ¢/, there is a directed arc from t.i to pi.

The interpretation of a 'token' in a place depends on rnj(p_) = (p(pi), _(p_)).

From the above definition, three different types of variables are operated on or

carried along through the net. The three types of fuzzy variables have different

interpretations:

A local fuzzy variable is attached to a place, its value indicates the

uncertainty of the local variable or object which is attached to the place.

It is represented by an n dimensional membership distribution function

on the assumption that the object is n dimensional. One example is

to define p(R) for the robot R. Because R has 6 degrees of freedom(3

for position and 3 for orientation), p(R) is a 6 dimensional membership

function. The membership grades are defined for each possible position

and orientation of the gripper in a given universe of discourse.

A fuzzy marking variable is attached to a place. It is a 1 dimen-

sional membership distribution function denoting the uncertainty that

a token exists in a given place. The universe of discourse for _o is the

occurrence of the event denoted by the place. In one example, the place

may indicate the event that the robot has grasped an object. The fuzzy

marking variable indicates the uncertainty that the event has occurred,

i.e., whether the robot is actually holding the object.
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Figure 5.1: A robotic system for a grasp task. The robot(R) moves to the strut(S)

on the table and grasps it. (a) shows the initial state for this task. R has 6 degrees of

freedom for the position and orientation of the gripper, (x, y, z, ¢, w, ¢). S is defined

by the position of its center and the angle between S and the x' axis, (x', y', 0). (b)

shows the final state of this task. RS is described by x", the distance between the

grasping point and O", the center point of S, under the assumption that the grasp

position will be on the strut.

A global fuzzy variable is attached to a token. This is an m dimen-

sional membership distribution function related to a characteristic vari-

able of a global task. The global fuzzy variable may be used to sequence

a set of transitions so that a global task can be completed. An example

is the use of a global fuzzy variable to represent 'degree of completion' of

a task. The fuzzy value should increase during the execution to indicate

correct sequencing of operations.

Figure 5.1 shows an example of a robot assembly task which illustrates these

three types of fuzzy variables. This robotic system consists of a robot(R) and a

strut(T) on a table. The robot gripper(R) moves to and grasps the strut(S) on the

table, and this grasping state is described as RS. Figure 5.1(a) and Figure 5.1(b)

illustrate the system state before and after the 'grasp' operation.

This assembly task can be represented by a fuzzy Petri net shown in Figure 5.2.

pl,p2, ps and p4 represent the configurations Ro, S, R¢S, and Re, respectively. In this

representation, Ro and Rc means the robot gripper is open or closed, respectively.

.....
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Figure 5.2: The fuzzy Petri net representation for the robotic assembly task shown

in Figure 5.1. (a) shows the initial state of the system. (b) shows the final state

of the system. Ro and Rc means the robot gripper is open or closed, respectively.

P, 8, and o" of Ro and S in (a) are mapped by fl to those of RcS, R¢, and S

in (b). Note that the same color of tokens in p, in (a) and in p3 and p4 in (b)

indicates that a global fuzzy variable is attached to these tokens. Their colors are

different from that of the token in p2 in (a) and (b). The fuzzy marking variable

defines alternative output states RcS or R_, S. The global fuzzy values might

be a(Ro) = 0, a(R_S) = 1, a(R_) = 0. The local fuzzy variable p describes the

positional uncertainties of the robot and object in terms of their fuzzy membership

functions.

p(Ro) and p(R¢) are 6-D membership functions representing the uncertainty in the

robot position, p(S) is a 3-D membership function representing the uncertainty

in the position of the strut on the table, p(RcS) is a I-D membership function

with parameter z" which represents the uncertainty in the grasp point along the

strut. We assume _(pi) for this example is a fuzzy singleton, which describes the

uncertainty of event completion. For example, in Figure 5.1(a), _(Ro, S, RcS, R_) =

(1,1,0,0), and in Figure 5.1(5), g(Ro, S,R¢S,R¢) = (0,0.1,0.9,0.1). If the token

whicl_ represents an entity containing R carries a global fuzzy variable indicating

the degree of completion of the task and under the assumption of mt(qj) as a fuzzy

singleton, then in Figure 5.2(a), a(Ro) = 0, and in Figure 5.2(5), a(R_S) - 1,

 (ac) = 0.

As with other Petri net models, we would like to use the fuzzy Petri net

to analyze properties such as reachability, liveness, safeness, and reversibility. We
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m
define the reachable set of a fuzzy Petri net as the set of maxkings(consisting of fuzzy

marking variables) reachable from the initial marking after all feasible transition

sequences are fired. While it is complicated to analyze the properties of a fuzzy

Petri net with all three types of fuzzy variables, some basic cases can be treated to

yield useful properties. For an ordinary Petri net, all useful properties are defined

based upon the markings on the net. The fuzzy Petri net model adds the complexity

of local and global variables which must be considered. In this analysis, we will

consider first the problem where only local fuzzy variables exist in the fuzzy Petri

net model.

There may be three different cases according to the above assumptions. First,

firing rules follow from the ordinary Petri net, and local fuzzy variables are un-

changed. Second, firing rules follow from the ordinary Petri net, and local fuzzy

variables axe changed. Third, firing rules are conditional upon input variables, and

local fuzzy variables are changed. The analysis for these three cases will be discussed

in Section 5.5.

5.3 State Representation of an FPN Model

Because there are three different kinds of variables associated with places and

tokens in the FPN, three different system states are defined and given below. In

these definitions, places are considered as parameters of system states, and from a

place, we can find the corresponding attached local and global variables.

Definition 5.2 Local fuzzy state St: St(pl,p2,... ,p_) = (p(pl), p(p2),-.., p(p_,)),

an n-tuple of local fuzzy variables in the FPN. p(pi) is either a membership function

in a universe of discourse, if this information is available, or, e, if this information

is not available.

Definition 5.3 Fuzzy marking state Sm:S_(pI,p2,..., p,) = (8(px), 8(p2),..., _(p,,)),

an n-tuple of fuzzy marking variables in the FPN. 8(Pi) is a membership function

L_
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in a universe of discourse.

Definition 5.4 Global fuzzy state Sg: Sg(pl,p:,..., p,_) = (a(pl),a(p2),..., a(p,,)),

an n-tuple of global fuzzy variables in the FPN. a(pi) is either a value of a token if

this token is existing, mt(qj), or, e, indicating that no such information is available.

For the system state shown in Figure 5.2(a), St(Ro, S, RcS, Rc) = (p(Ro), p(S),

e,e); S,n(Ro, S,R¢S,R_) = (1,1,0,0); and Sg(Ro, S,R_S, Rc) = (0, C,e,e). For the

system state shown in Figure 5.2(b), St(Ro, S,R_S, Rc) = (e,p(S),p(R¢S),p(Rc));

Sm(Ro,S, RcS, Rc) = (0,0.1,0.9,0.1); and Sg(Ro, S, RcS, R_) = (e,C, 1,0).

5.4 Reasoning Rules in the FPN

Three types of reasoning rules for fi of a transition ti in the FPN model are

t_ t, and t, Specifically, we assume t_ has k input places whichrepresented as rp , r_ , r a .

correspond to k variables, Pil, Pi2, .--, Pik, at time N. And, ti has t output places

which correspond to t variables, pq, p_, ..., Pi;, at time N + 1. Therefore,

,, (N+,), , p, (N÷,),rp _ • • •,• = (ptpq ),p(pq ), (p_; )). (5.1)

,,(o(pl )), ,  (plT)))TQ .,.

a x _Piz " " " '

,, , (5.2)= (_(Pi'_ ), _(Pq ),'",

, , (N+x), a' (_v+,), a(pl_V+'))). (5.3)= I.atpq ), (pi_ ),...,

In using rp during firing of ti, the values of p contained in all input places are

evaluated and t_ generates the values of p for all output places. The other two kinds

of reasoning rules are used in a similar way. The selection of reasoning strategies

for rules, such as using a rule base or functional relationships, is based on different

applications. The choice of whether to destroy the original values may also depend

on the specific application. In principle, these rules may be further generalized to

model interactions among the three types of fuzzy variables. For purposes of analysis

here, we will not consider those cases.
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Figure 5.3: The input local variables and output local variables for a transition tl

of Case 1. Before ti is fired, pi, contains a token, 1 _< u < k. After ti is fired, pi,

obtains a token, i _< v _ s. All local fuzzy variables for this case are fixed.

In the FPN shown in Figure 5.2, the state changes are implemented by tl which

consists of r_1, r_ 1, and r_'. These rules can be shown as: r*o:(p(R(ou)),p(s(U))) =

(p(S(N+t)),p(RcS(lV+l)),p(R(cN+l))); r_'(1,1) = (0.1, 0.O,0.1); and r_'(O,C) = (C, 1,0).

L

It,,..

5.5 Property Analysis for Several Basic Cases with Local Fuzzy Vari-

ables

Figure 5.3 shows a transition ti in the net which has k input places corre-

sponding to k variables, p_, Pi2, ..., pi,. ti has s output places which correspond to

s variables, pit, Pi_, ..., pi,. The corresponding local fuzzy variables are represented

as pi_, Pi2, ..., pi, and pq, pq, ..., pi;. For the sake of simplicity, we draw one-

dimensional membership functions to represent all these variables. The membership

functions for pi,(1 <_ v <_ _) prior to marking, may be thought of either as the func-

tion which existed from the previous marking, or as an a priori function assigned

to the place. Transition ti has a reasoning function fi. Two types of reasoning rules
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t, and t,for fi, rp r0, are used for the following discussions.

5.5.1 Case 1: Local Fuzzy Variables Unmodified by Transitions

Case 1 can be described by two conditions: (1) P(Pd) = C.i, 1 < j < n and C i

is a fixed membership function; (2) for some transition ti, all input places have at

least one token at time N, i.e., O(p!_) > 1, 1 _< u < k.

If the above two conditions are satisfied, then ti is enabled. The resulting rule

t, can be written as
rQ

)),o(pl = (a(p,i), .., a(p,;)),

m

B

m

U

m

U

m

B

m

and

A(pi,) = 1, i < v _< s.

Then we can obtain 0 for each output place as

, (N+l)x (g)
otp,, ) = _(p,, ) + a(p_,),.

and

l<v<s.

, (N+_), (N)

The membership functions for all local fuzzy variables are represented by the solid

curves in Figure 5.3, and these curves are unchangeable when the system is executed.

Therefore, each time when we reach and fire transition ti, we expect the same

input local variables and output local variables and the output marking only depends

on the input marking of ti. This case can be considered as the same as the ordinary

Petri net firing mechanism, with associated fixed local fuzzy variables. The following

properties can be seen for this type of FPN.

Theorem 5.1 Assume a fuzzy Petri net of Case 1 is mapped from an ordinary Petri

net by assigning to each place a fixed local fuzzy variable, and assume the reasoning

function is the same firing rule as in ordinary Petri nets. The resulting fuzzy Petri
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net is live, safe, and/or reversible if and only if the original Petri net is live, safe,

and/or reversible.

Proof: All these properties are dependent upon the firing mechanisms of transi-

tions in the net. Because the enabling conditions of transitions only depend on the

markings of input places, the properties of liveness, safeness, and reversibility are

unchanged while the fuzzy Petri net is mapped from an ordinary Petri net or the

fuzzy Petri net is mapped back to the ordinary Petri net.

Q.E.D. []

w

2

w

w

5.5.2 Case 2: Local Fuzzy Variables Modified by Transitions

Case 2 can be described by two conditions: (1) The output local variables of

a transition ti may be changed after ti is fired, i.e.,

where N and N + 1 represent the different time slots before and after ti is fired;

(2) for some transition ti, all input places have at least one token at time N, i.e.,

If the above two conditions are satisfied, then ti is enabled. The resulting rule

t, can be written as
rQ

r_,(_(pl_),_(pl,u_),...,o(p!_))= (_X(p,,_),_(p,_),...,,',(p,;)).

Similarly,

and

, (N+l)__tp,. j= _(pl__)- 1, l<u<k.

The membership functions of all local fuzzy variables are represented by dotted

curves in Figure 5.4. These curves may be changed during the execution of the
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Figure 5.4: The input local variablesand output local variablesfor a transition ti

of Case 2. Before ti is fired, pi,, contains a token, 1 _< u _< k. After ti is fired,

pq, obtains a token, 1 _< v _< s. The output local fuzzy variables for this case are

changed.

system. The generation of the output local variables are dependent on the input

ti
local variables and the rule rp.

Case 2 is more general than Case 1. For the robotic assembly task in Figure

5.1, Case 1 fixes the uncertainty associated with each place, and thus the errors this

case can model are very limited. For case 2, the configuration R_S depends not only

on transition tl but also the initial configuration p(Ro) and p(S). The following

properties can be found for this type of fuzzy Petri net.

Theorem 5.2 Suppose a fuzzy Petri net is mapped from an ordinary Petri net by

assigning to each place a changeable local fuzzy variable and the reasoning functions

are the same as the firing strategy as defined in ordinary Petri nets. The resulting

fuzzy Petri net is live, safe, and/or reversible if and only if the original Petri net is

live, safe, and/or reversible.

Proof: The proof is similar to Theorem 5.1 because the changeable local fuzzy
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variables still have no influence on deciding the marking of the net.

Q.E.D.

5.5.3 Case 3: Transition Firing Depends on Input Local Fuzzy Variables

Case 3 can be described by two conditions: (1) The output local variables of

a transition ti may be changed after ti is fired, i.e.,

^(_(N+I) _ ^/_(Y+l)\ M,_(N+I)_ _r',__,-(N)',,,,,,, J,p(p!_)),...,p(p_)) = (,_,, J,,_,,_ J,... ,_,_,_ ,,,

where N and N + 1 represent the different time slots before and after ti is fired;

(2) for some transition ti, all input places have at least one token at time N, i.e.,

0(p!."_)>_,, 1_<u ___k.
If the above two conditions are satisfied, then ti is enabled. If we fire ti, then

0(p_, ), p(p_, ), p(p_ ),..., p(p_))) = (n(pq), ±(p_;),..., A(p_:)),

=!:5

w

and

n(p.)s{0,1}, 1 _<,_<s.

Then we can obtain _ for each output place as

_t,,(lv+_)_ IN )_'i, /=_(P )+A(pi,), l_<v<_s,

=
m

=

w

w

and

, (,,+,_, _(pl__)- 1, 1< u < k.OtPi_ ) = - -

The membership functions of all local fuzzy variables are represented by dotted

curves in Figure 5.5. These curves may change during the execution of the system.

For this case, the output local fuzzy variables are dependent on input local

fuzzy variables and the fuzzy reasoning rules, and the output markings after ti

is fired are dependent upon the input local fuzzy variables, the input markings,

and the firing functions. Therefore, even if all input places have tokens, after ti is

1,5
l

_7
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Figure 5.5: The input local variables and output local variables for a transition ti

of Case 3. Before ti is fired, pi_ contains a token, 1 < u < k. After ti is fired, some

pi; obtain a token, 1 < v < a. The output local fuzzy variables for this case are

changed.

fired, it does not necessarily guarantee that all output places get more tokens. One

application of this type of fuzzy Petri net is sensor-based selection for on-line robotic

operations. After a sensor is used to verify a system state, the following operation

may be local error recovery, global error recovery, or continuation of the execution

of the planned task sequence, all of which depend on the token in one output place

of a sensing transition.

The properties of this type of fuzzy Petri net are not provable in general

because of different reasoning strategies which decide the availability of tokens in

t,. Someoutput places dependent upon input local fuzzy variables and the rule r_

useful subclasses of this case are worthwhile to investigate. We first give the following

definition:

Definition 5.5 A mutually exclusive transition t_: (1) if pq, pq, ..., and Pi; are s

output places of tl; (2) After ti is fired, A(_0(pi, )) = 1 or A(g(pi, )) = O, 1 < j < s,
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L_
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=

and Z_= U_{p,',: A(_(p,,))= 1}, 9' = Uj{p_',: _(_(p,',)) = 0}, (3) Z_# _, TY# 0,

DI'ITY = 0, and DUTY = U_=l{pej}.

The following theorem provides the condition for safeness for a class of fuzzy

Petri nets.

Theorem 5.3 Suppose a fuzzy Petri net is mapped from an ordinary Petri net

by assigning each place a changeable local fuzzy variable. The reasoning functions

and the input local fuzzy variables decide the output marking and the output local

fuzzy variables. If one and only one mutually exclusive transition ti exists in the

net and other transitions satisfy the conditions described in Case 1 or Case 2, and

the original Petri net is safe, the resulting fuzzy Petri net is also safe.

Proof: Because after ti is fired, not all output places will receive tokens, therefore,

for any following transition sequences, the places in the net will get fewer or the

same number of tokens as in the ordinary Petri net. The resulting fuzzy Petri net

will be safe if the original ordinary Petri net is safe.

Q.E.D. []

Definition 5.6 MEO(mutually exclusive output) subsets of a mutually exclusive

transition ti: For all feasible transition sequences from the initial marking and for all

possible input local fuzzy variables available for ti, we assume there are L different

partitions of the set of the output places of t,: D1, :D2, ..., T)L. If the following

conditions are satisfied: (1) _iNDj = 0, i # j and 1 < i,j <_ L; (2) UL=_T)I =

$ tUj=xPi,; (3) At any time after ti is fired, A(pi;) = 1, for all pl, E Dj and A(pi,) = 0

for all pi, _ D_, 1 <_ v < s and 1 < j _< L, then D1, D2, ..., Dr. are called MEO

subsets of ti.

Figure 5.6 shows a mutually exclusive transition with four output places and

four examples of possible output markings. Figure 5.6(a), 5.6(b), and 5.6(c) show
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Figure 5.6: Some examples of MEO subsets for a mutually exclusive transition with

four output places.
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MEOsubsets. In Figure 5.6(a), L = 2, D1 = {p3,p4}, 232 = {ps,p6), which indicates

that sometimes after tl is fired, L0(_) = e(p4) = 1, and _0(ps) = _o(p6) = 0, and

sometimes e(ps) = _0(p6) = 1 and _o(p3) = _(p4) = 0. No other possibilities may

appear for _. In Figure 5.6(b), L = 3, D1 = {p3}, 7)2 = {p4,ps}, and 233 = {p6},

and in Figure 5.6(c), L = 2, D1 = {P3,p6}, and 232 = {pa,ps}. Figure 5.6(d) shows

non-MEO subsets where ¢0(p4) = i, e(ps) = 1 and _(_) = 1, e(p4) = 1 are both

possible after firing ti. The following theorems define a class of fuzzy Petri nets

which guarantee the properties of liveness, safeness, and reversibility.

Before we discuss the following theorem, we give definitions of the addition of

two Petri nets and subtraction of a subnet from a Petri net. Similar operations on

Petri nets are used in synthesis techniques of Petri nets[53].

Definition 5.7 The addition("+") of a net Nx = (P:, T1, al,/31) and a net N2 =

(P2,T2,c_2,f12): N1 + N2 = (PI UP2,T10T2, a,_) where a = Oij{(pi, tj)}, (pi,tj) E

C_l Uc_2, and fl = Uq((tj,pi)}, (tj,pi) E _, Ufl2.

Definition 5.8 The subtraction("-") of a subnet N' = (P', T', a', 13') from a Petri

net N = (P,T,o_,_): N- g' = (P - P',T- T',c/',_"), where a"= U,1{(p,,tj)},

(pl,tj) E a, _" = U(i{(t.i,pi)}, (tj,pi) E _, and pi E P - P', t1 E T - T'.

Theorem 5.4 If a fuzzy Petri net is obtained in the same way as described in

Theorem 5.3, and ti has MEO subsets D1, D2, ..., DL, and the following conditions

are satisfied: (1) there exist L number of subnets A/'I, A/'2, ..., A/'L and Aci contains

Di, 1 < i < L;(2) N-(E_=I N,-N1), N-(E_=l g,-g2), ..., N- (Z:_=I N,-Ni)

are live; (3) NiI']Nj = $, i _ j and 1 < i,j <_ L. Then this fuzzy Petri net is also

live.

Proof: Suppose at any time when ti is fired, the places in 291 always obtain tokens,

then N - (_iL=l Ni - N1) is live. In other words, the transitions contained in N -

()"_/L=1 Ni - N1) are live. Similarly, if we assume Dj is always guaranteed to obtain
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Figure 5.7: A fuzzy Petri net with one mutually exclusive transition tl. After tl is

fired, p_ and p_ or p4 will receive the tokens based on the local variable available in

Pl and r_ 1.

tokens after ti is fired, then the transitions in N - (EL=l N_ - N¢) are live. Because

after tl is fired, all Dj may contain tokens, therefore, all transitions in the net are

live. The fuzzy Petri net satisfying the above conditions is thus live.

Q.E.D. []
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An example for a fuzzy Petri net with one mutually exclusive transition tl and

MEO subsets D_ = {/h, p3} and D2 = {p4} is shown in Figure 5.7. The subnet N_ has

the following structure: P1 = {/_,p3,ps,ps}, T1 = {t2,t3}, al = {(p2,t2),(p3, t3)},

_1 = {(t2,ps),(t3,ps)}. The subnet N2 has the following structure: P2 = {p:_,pz},

T2 = {t4}, a2 = {(p4, t4)}, and _2 = {(t4,p_)}. N1 contains D1 and N2 contains D2.

From Theorem 5.4, we can prove that this fuzzy Petri net is live.

The property of reversibility is important for modeling error recovery strategy

using Petri nets. When a fuzzy Petri net is used, reversibility implies that the

marking is restored for the initial state, and some local fuzzy variables may be
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changed. The followingtheorem proposes the condition for a fuzzy Petri net to be

reversible.

Theorem 5.5 If a fuzzy Petri net is obtained in the same way as described in

Theorem 5.4 except that subnets N - (EL=I Ni- Nt), 1 _ l < L, may or may

not be live, Y - (_L=_ N_ - Nx), g - (E_=, N_ - N2), ..., N- (_=_ Ni - NL) are

reversible, and Nx, N2, ..., Nt. contain no token in the initial marking, then this

fuzzy Petri net is also reversible.

Proof: The proof is straightforward following the same strategy as discussed in

Theorem 5.4.

Q.E.D. o

m

L-

If there axe more than one mutually exclusive transition, til, ti2, ..., t_., existing

in the fuzzy Petri net, we can generalize the above discussions to the following

corollaries:

Corollary 5.1 Suppose a fuzzy Petri net is mapped from an ordinary Petri net by

assigning each place a changeable local fuzzy variable. The reasoning functions and

the input local fuzzy variables decide the output marking and the output local fuzzy

variables. If more than one mutually exclusive transition, ti_, ti2, ..., ti., exists in

the net and the original Petri net is safe, the resulting fuzzy Petri net is also safe.

Corollary 5.2 If a fuzzy Petri net is obtained in the same way as described in

Corollary 5.1, and ti,,(1 _< u _< r) has MEO subsets Di._, Di,. 2 , ..., Di,, n • And

the following conditions are satisfied: (1) there exist UL number of subnets Ni,_,

uL

Ni,,2, ..., Ni,L and Ni, contain :Di,, ul < j < UL; (2) N - (Ej=,,_ Ni, - Ni_ ),

g (E_,_ Ni, Ni.2), ..., N -L- - - (Ej=_ N_, - N_., ) are live; (3) N_,fqN_ = O,

p :/: q and ul <_ p, q <_.uL, then this fuzzy Petri net is also live.
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are reversible, and Nil, Ni2, ..., NL.

this fuzzy Petri net is also reversible.

Corollary 5.3 If a fuzzy Petri net is obtained in the same way as described in

-(_j=,_ Ni,-N i,), ul < l < UL may or mayCorollary 5.2 except that the subnets N _L

not be live. N _'_ _L UL-(}"_j=u, Nj Ni,_),.. g (_j=u_--Ni_L)-(E_=,,, Ni-Ni,,,),N - ", -

contain no token in the initial marking, then

5.6 FPNs with Global Fuzzy Variables: Example of Task Sequencing

An application of FPNs has been discussed for the task sequencing problem[12,

20]. When a robotic assembly system is modeled by a fuzzy Petri net, all feasible op-

erations in the system are represented by transitions, and all possible objects, such

as components, devices, subassemblies, and assemblies are represented by places.

Given an initial marking and an expected final marking, a task sequence planning

problem is equivalent to the problem of sequencing transitions, which usually oc-

curs in an off-line mode. In this approach a global fuzzy variable is introduced to

represent 'degree of completion' of the task while maintaining the precedence of key

operations ('key transitions').

A reachability strategy[16, 89] can be used to search for sequences in an or-

dinary Petri net. For sequencing transitions, while maintaining precedence among

those properties that are changed during the process, a prime number marking al-

gorithm was proposed[12, 14, 20, 21] to generate global fuzzy values of a variable

a(pi) such that precedence is preserved. In this case, the fuzziness of the net only

shows up in tokens, not places.

In the example shown in Figure 5.2, if we assume this net is an FPN carrying

_, the initial marking using a values is Sg = (0, C, e, e), and the final marking

is S 9 = (e,C, 1,0). Places pl, ps, and P4 contain the same kind of token, which

indicates whether the task is completed, but with different values, 0 and 1.

For other examples, there may be k colors of tokens, cl, c_, ..., ck. For
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color c_, an independent subsequence for reaching the global task is ti,, ti2, ..., t;,,.

The transitions in this subsequence may not be a consecutively enabled transition

sequence. However, to correctly execute the global task, all subsequences should

be completely executed with a correct order. When using this strategy to search

or plan a transition sequence from the net, time and space will be saved compared

with the methods used in ordinary Petri nets.

w

_=
w

°. .== .

r

5.7 FPNs with Local Fuzzy Variables: Examples of Robotic Sensing

5.7.1 Local Fuzzy Variable for Sensor-Based Error Recovery

Figure 5.8 shows the example of local fuzzy variables for the robotic system

from Figure 5.1. The position of the strut on the table is represented by a fuzzy

variable p(S). The position of the robot gripper is represented by a fuzzy variable

p(R).

Figure 5.8(a) is a correct positioning of RS, but in Figure 5.8(b), an incorrect

configuration is shown. This information of the real state of RS is not known prior

to execution and a sensor will be used on-line to verify the state.

We assume the next operation of the robot is t2, a move operation, as shown in

Figure 5.9 (this is a simplified extension of Figure 5.2 because we omit the possibility

of tl resulting in Re and S, and we don't distinguish Rc and R°. This simplifica-

tion can also be implemented by using a sensor after tl, so that there will be no

vagueness between RoS and S, R¢ after tl is fired.). This may fail if the robot is

not holding anything. An appropriate decision should be made to evoke an error

recovery sequence in case the grasp operation fails.

We assume the membership function for p(RS) is a 2-D membership function

as shown in Figure 5.10. To separate the 2-D membership function into two possible

future executions, move or error recovery, we use a sensing operation to verify the

state after the grasp operation is done. A sensor separates the 1-D membership

_I
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Figure 5.8: A scenario of robot-strut assembly in Figure 5.1. (a) shows that the

grasp position is above the strut and (b) shows the gripper has missed the strut.

The dotted circle displayed on the table plane is a possible range the robot gripper

may reach.

W

w

l

l



|i

t_ 123

P_--_R (grasp)
move)

I2

Figure 5.9: A FPN representation for a grasp and move operation for the robot.

RS _ is a specified state the move operation is supposed to reach.

=

z"(membership grades)

_ . u"._ o . /_ =,,(=g,y,g)

Membership l__llf__.i ._

5___1___-5_..... -'"

x"(on strut)

Figure 5.10: A distribution for the membership grades of the position the robot

gripper reaches to grasp the strut. The darkened curve is a 1-D membership function

where the robot is assumed to reach the strut.
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plf-.,R (grasp) (sense) (move)

(grasp*) _ ("ungrasp")

U

I

m

in

J

Figure 5.11: A modified FPN which includes an error recovery sequence. If the

sensed value does not fall near the x" axis, an "ungrasp" transition, for a robot to

move to another temporary position(not necessarily the original position) and then

grasp the strut again, is fired. Note that grasp* may not be the same as grasp. The

error recovery sequence is initiated by the fuzzy reasoning rule in f_ attached to

transition t2.

function from a 2-D membership function as shown in Figure 5.10. If y" -_ 0,

the 'darkened' membership function describes the resulting uncertainty in x" of

the grasped strut. If y" _ 0, an error recovery sequence should be followed to

disassemble RS. The fuzzy reasoning rules at t2 models the resulting decisions.

On-line execution with an actual sensor value requires a fuzzy control decision rule

which executes the appropriate sequence. A modified fuzzy Petri net based on the

above discussion is shown in Figure 5.11. The error recovery sequence is initiated

by the fuzzy reasoning rule in f2 attached to transition t2.
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5.7.2 Modeling Sensing Operations as Mutually Exclusive Transitions

During the execution of a robotic system modeled by a fuzzy Petri net, the

exact positions of the arm or the state of the object being processed are never

known exactly because of the approximation of the controller and the uncertain

environment. A sensor or multiple sensors are used to verify and validate on-line
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approximate information so that the whole operations space can be divided into

several mutually exclusive ranges. Sensors may also have errors and approximation

and fuzzy reasoning rules can be used to reduce the fuzziness caused by uncertainty

of the partial results. The fuzzy marking variables and the output local fuzzy

variables are obtained through reasoning at the sensory transition.

The fuzzy Petri net corresponding to a mutually exclusive transition tt with

three output places is shown in Figure 5.12. tl is modeled as a virtual sensory

transition which will verify the state of pl and obtain the corresponding output

mutually exclusively. From this example, we see that when a local fuzzy variable in

pt is obtained, it is input into t_ for reasoning about the token in an output place.

The reasoning function rt__ consists of three steps: (1) intersect input fuzzy variables

with the expected membership function residing in p_ and obtain the intersection

area or the highest membership degree, (2) intersect input fuzzy variables with the

expected membership function residing in P3 and obtain the intersection area or the

highest membership degree, (3) intersect input fuzzy variables with the expected

membership function residing in P4 and obtain the intersection area or the highest

membership degree. Then, from these three partial results, we can get a maximum

value corresponding to a certain place Pi, 2 < i < 4. In this example, p3 has

the maximum intersection area as shown by the shaded area in Figure 5.12(a).

Therefore, a token is put in p3 after the reasoning process ends as shown in Figure

5.12(5).

In a real system, a sensing operation may direct the following transition se-

quences to continue the execution, locally recover from an error if that error is

locally recoverable, or globally recover from an error if that error is not locally re-

coverable. Each sensing operation is a mutually exclusive transition, and its output

places constitute MEG subsets.
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5.8 Conclusions

_=_

In this chapter, we have proposed a generalized definition of the fuzzy Petri net

using three different types of fuzzy variables: local fuzzy variables, fuzzy marking

variables, and global fuzzy variables. Local fuzzy variables are examined in detail,

and are used to reason about parameters associated with places. Fuzzy Petri nets

are shown to have advantages over ordinary Petri nets to model a system which has

vague, random, and approximate information. Sensors can be used to handle uncer-

tainty of occurrence of events and reduce the dimension of membership distribution.

Sensor-based verification for states and sensor-based error recovery strategies can

be incorporated into the FPN model of the system. FPNs are also shown to be a

good model for off-line sequencing and on-line reasoning about execution.

Properties of these nets have been defined for specific cases of interest. An

example of the application of these properties is modeling and analysis of a sensor-

based robotic system. Uncertain sensory input data can be handled and sensory

transitions may be modeled as mutually exclusive transitions. Only a subset of the

output places can receive tokens after the transition is fired, the other places will

not receive any tokens.

Fuzzy values as defined here are membership functions in a certain universe of

uncertainty. Sometimes, we may want to know the crisp values for some tokens or

the crisp state of the system. In this case, a fuzzy defuzzifier[63, 64] is necessary to

defuzzify the fuzzy values before it is output to the controller. Similarly, the input

values to the FPN model may also be crisp values, and a fuzzifier[63, 64] is needed

to turn crisp values to fuzzy values. Also, different reasoning strategies may be used

for different transitions in the net.

Fuzzy Petri nets are potentially useful to model many different types of dis-

crete event systems with uncertainty. Global fuzzy variables may be used to plan

operations sequences for robotic or manufacturing systems. Local fuzzy variables
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may be usedto reasonabout sensor-basederror recoverysequences.Fuzzy marking

variablesimposeprobabilistic conditionson the systemmarking. The interrelation-

ship amongthesefuzzy variablesis a topic which leadsto additional researchissues.

In practice, other forms of non-fuzzyprobabilistic reasoningcould be used within

this framework.

An importaat issuerelated to this researchis the choiceof rulesfor transitions.

Experiments can be doneto learn rules. A fuzzy Petri net will be robust only after

many experimentsand modificationsof the reasoningstructures. A neural network

may be useful to represent these firing rules. This researchalso has important

implications for knowledgerepresentation,knowledgereasoning,modelingof expert

systems,and other AI applications.
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CHAPTER 6

TASK SEQUENCE PLANNING USING FUZZY PETRI NETS

This chapter discusses the problem of representation and planning of operations

sequences in a robotic system using fuzzy Petri nets[12, 17, 18]. In the fuzzy Petri net

representation, objects whose internal states are altered during a process are termed

'soft' objects, and the process steps where alterations may occur are labeled 'key'

transitions. A correct sequence is defined as a sequence which is feasible, complete,

and satisfies precedence relations. In this formulation, the internal state of an object

is represented by a global fuzzy variable attached to the token related to the 'degree

of completion' of the process. All correct operations sequences must satisfy process

sequence constraints imposed by fuzzy transition rules. The correct precedence

relationships and the characteristics of completeness for operations in all feasible

sequences are guaranteed by the prime number marking algorithm which marks

the fuzzy Petri net. The use of fuzzy transition rules in this application simplifies

the representation and search problems for task planning where correct sequences

do not depend on exact knowledge of internal states, but only their precedence

relations.

6.1 Introduction

The objective of task sequence planning for a robotic workcell or manufacturing

system is to efficiently represent all feasible and complete task sequences with correct

precedence relations and to be able to choose among them. A sequence of the

shortest length or other optimality criterion may be selected from these correct

sequences. In previous work[ll, 13, 15], it has been shown that the AND/OR net

representation of an assembly system may be mapped to an ordinary Petri net with

specific properties such as safeness, 1-boundedness, liveness, and reversibility. In

129
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this chapter, we introduce a fuzzy Petri net mapping instead of the ordinary Petri

net mapping to represent a system which includes some soft objects, e.g., objects

which change their internal states during the task. A state of the system is thus

composed of a set of membership functions for the completion of the global task

on all feasible objects. Fuzzy transition rules implement the sequencing constraints

required to direct the process to the final global state of the system.

AND/OR graphs[47, 48] have been used in assembly task planning to represent

and search all possible assembly sequences. The AND/OR net[ll, 13, 15] extends

the AND/OR graph representation to incorporate system mechanisms and devices,

and defines an Internal State Transition(IST) operation which modifies the internal

state of an object. The AND/OR net is generated based on the descriptions of

objects and all feasible geometric relationships among them, and it is used to plan

operations sequences for geometric manipulations including assembly, disassembly,

grasping, and robot motions. In [11, 16], we showed that an AND/OR net could be

mapped to a Petri net, and this Petri net can then be decomposed to lower level

nets[13, 15, 19] while retaining properties of liveness, 1-boundedness, safeness, and

reversibility.

In this chapter, we expand the domain of the Petri net mapping as a rep-

resentation of a robotic workcell, by defining fuzzy internal states of objects and

using fuzzy transition rules in the Petri net to impose precedence constraints on key

operations.

An object in the system is defined as a single component, a subassembly of

several components, or a complete_sembly. A soft object is defined to be an object

which includes at least one internal state variable. Similarly, a hard object is defined

to be an object which is not a soft object. In this chapter, the internal state variables

of soft objects are described by fuzzy values of tokens, and a prime number marking

algorithm is used to map an ordinary Petri net to a fuzzy Petri net in a manner which
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guarantees consistent sequencing of operations. In the resulting fuzzy Petri net, each

transition has an associated fuzzy reasoning rule and an associated weighting .factor

which evaluate the resulting values in the output places of this transition based on

the fuzzy values of tokens in its input places. Transitions which cause the changes

of fuzzy values of tokens for objects, are defined as key transitions and must be

included into all feasible and complete task sequences.

One difficult problem in choosing feasible task sequences is to order the cor-

rect precedence relationships among all important events or transitions. Using prime

number marking in modeling the system, the weighting factors as well as the initial

tokens and final tokens are chosen for all soft objects and hard objects so that an

assigned precedence relationship will be automatically followed, and all sequences

which incorporate incorrect precedence relationships will be recognized and dis-

carded. The prime token values of soft objects can be interpreted as the degrees of

certainty of completion for these objects.

In our recent work[17], a definition of the generalized fuzzy Petri net was

given which incorporated three types of fuzzy variables: local fuzzy variables, fuzzy

marking variables, and global fuzzy variables. Property analysis associated with

some typical cases of fuzzy Petri nets was given[18]. In this chapter, we use the

fuzzy Petri net model which carries only global fuzzy variables for task planning,

and use it to represent and reason about all feasible, complete, and correctly ordered

task sequences for a robot workcell.

6.2 State Representation for Task Sequences

A robotic or automated manufacturing system consists of many different kinds

of components such as robots, sensors, fixtures, handling mechanisms, and parts.

Different tasks may be assigned to and accomplished by the system. All devices must

be coordinated to insure successful completion of a task goal through a sequence of
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feasible operations. This on-line coordination may be managed by a subset of the

system Petri net which couples transitions to on-line execution of desired operations.

From the task sequence planning point of view, the system must follow a

partially ordered sequence of intermediate states to reach from the initial state to

the final state[48], where state is defined as the vector of the states for all components

in the system. We assume a system consists of n components Cx, C2, ..., Ca, where

Ci represents the ith component. We use sj(Ci) to represent the state of component

Ci at time j, where we also assume a discrete time representation and j is thus

zero or a natural number. For the moment, we assume that each component may

occupy a fixed number of feasible states in the range 0 to Ni. The integer vector

representation for the state of the system is ff.j = (sj(C1) sj(C2) ... sj(Cn)) T,

0 < j < M, and M + 1 is the maximum number of all feasible states the system

may occupy. In this approach, a partially ordered list of state vectors may be used

to represent a task sequence.

An alternative representation for the task sequence is based on the defini-

tion of specific types of state transitions. An operator will change the state of

the system by making a set of components change from one substate to another

substate, where a substate is defined as oc_j = (sj(Cm) sj(C_) ... sj(Cm)) T and

{sj(Cp,), sj(C_), ..., sj(Cm) } C_ {st(C,) , s_(C2), ..., sj(C,_)}. We introduce the

concept of substate because many tasks may be thought of as functioning on several

objects, i.e., a subset of the objects in the system. Three kinds of tasks, 7'1, T2, and

T3, are defined as follows:

(1) Assembly: One set of components or subassemblies are combined with or

put in geometric contact with one or more other sets of components or subassemblies.

Tx(Oh, Oq, ..., 0,,)= {{Cj:, Cj,, ..., Cj,}}, (6.1)

where

o,,= ...,
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o_ c {c_,, cj,, ..., cj,}, 1 <k<., ..d,

0% A 0% =0, 1 <_ kl,k2 <2 u.

(2) Disassembly: A subassembly or assembly is separated into a set of compo-

nents or subassemblies.

m

W

E

T_({C,,, C,,, ..., C,,}) = {Oil, Oj,, ..., 0_,}, (6.2) m

m

where

oj, = {c}j'), c__') _u_)_

Ojk C_ {Cil, Ci2, ..., Ci,}, l < k <_ l, and,

0_, N Oj_, = O, 1 < kl,/¢2 < i.

(3) Internal State Transition: The internal state of a set of components is

modified by changing the internal state of a single component in this set, or by

changing the relative geometric positions among the components of an assembly, or

by modifying a property of a single component in a compact set of components.

T3(O,,)= 0,, (6.3)

where

g

m

m

R

and

o, = {4 c,,), _(c,,), ..., _(c,.), _(c,,+,), ..., _(c,,+,,),..., 4 c,,)},

o, {4c,,), 4c,,), ..., ,'(c,.), ' .., '= _(c,,+1),. _(c,,+,), ..., _(c,,)},

o,,-o_ = {.,(c,,), 4c,,÷,), ...,4c,.+,,)},

o,-o,, = {.,'(c,,), _'(c,,÷,),...,_'(c,.+,,)}.

As the number and complexity of the system substates and their interactions

increases, the task representation may be further simplified by defining a geometric
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state vector, which separates geometric state relations from internal state variables of

individual objects. The geometric state vector is a binary vector where the elements

represent all feasible geometric states which can occur during the process. Using

this representation, a set of mathematical functions can be defined for task planning

and execution, and transitions from one system state to another system state may

be defined based upon the properties of vectors. For each single component Ci, the

corresponding element state is el = s(Ci) and for each feasible set of components

Cil, Ci2, ..., Ci,,, the corresponding element state is e_ = s({C_I,C_2,...,C_,,}).

The geometric state vector is thus GS = (el e2 ... e,_) T where el is either 0 or 1.

This vector occupies the same dimension for the same system at any time. We will

show in the following discussion how this representation can be generalized to a

vector of token values which carries the degrees of completion for the global task.

Figure 6.1 shows an example of a robotic system with two parts, one robot,

and two processing machines. In this system, the robot prepares and then inserts

the peg cylinder(P) into the hollow cylinder(C) to form a new cylinder assembly.

In one feasible, complete, and correctly ordered sequence, the robot first picks up

the raw peg cylinder, moves it to the cutting machine for cutting, then transfers

it to the lubricating station prior to insertion. The corresponding AND/OR net

representation for this system is shown in Figure 6.2.

In this AND/OR net, we use AND arcs to represent all feasible assembly or

disassembly operations. For example, RPC is connected with PC and R by an

AND arc, which means RPC can be disassembled to PC and R, and PC and R can

be assembled and form RPC. An internal state transition operation is represented

by a thick line connecting two corresponding nodes in the AND/OR net. The off-

line and on-line selection of the assembly, disassembly, or internal state transition

operation is based on the system state, i.e., the matching of the precondition of

each operation with all element states. AND/OR nets display all feasible objects

=
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Figure 6.1: A peg-cylinder assembly system.
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Figure 6.3: The ordinary Petri net mapped from the AND/OR net in Figure 6.2.

and all possible geometric relations among objects, and the geometric constraints

among on-line operations. The Petri net mapped from the AND/OR net[ll] for this

example is illustrated in Figure 6.3. The mapping is based on an algorithm which

decomposes each arc in the AND/OR net to two transitions in opposite directions

based on feasibility criteria. The resulting Petri nets guarantee the properties of live-

ness, 1-boundedness, safeness, and reversibility under the assumption of transition

feasibility.

The geometric state vector for this assembly scenario is

GS = (s(R) s(P) s(C) s(L) s(M) s(RP) s(PC) s(RPC) s(RPL) s(RPM) s(LUB) s(CUT)) T.

The value for any element is either 1 or 0 which corresponds to whether a single
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component or subassembly is existing in the system at this time. Many different

operations sequences could be searched from this Petri net task representation. If

we give this Petri net an initial state vector (1 1 1 1 1 0 0 0 0 0 0 0) and a

final state vector (1 0 0 1 1 0 1 0 0 0 0 0), a sequence which is t1(R,P --+ RP),

t12(RP, C ---* RPC), tla(RPC _ R, PC), will be selected as the shortest sequence

from all possible sequences. This sequence is actually not a complete sequence

because it just picks up the raw peg and inserts it into the hollow cylinder. A

new strategy will be necessary to generate only feasible and complete sequences

which satisfy the ordered process constraints. Any feasible sequence must include

the partial ordering: CUT _ LUB ---, INSERT. The next section introduces

an approach to fuzzy marking of the net which implements this process sequencing

constraint. In this example, one internal state variable for the peg is its diameter.

During the cutting operation, this parameter will be changed. The other internal

state variable is the surface lubricating state of the peg. These internal states will

be mapped to a global fuzzy variable membership function and carried by the tokens

flowing in the net.

6.3 Fuzzy Sets for Modeling System State

Fuzzy set theory[ll9] has been applied to fuzzy production rules[86], fuzzy

control[72], fuzzy expert systems[65], sensor fusion[107], pattern recognition[57],

and other interesting areas. Fuzzy logic and its applications provide an effective

means of capturing the approximate, inexact nature of the real world. In this chap-

ter, this methodology is used to describe the imprecise characteristics of processing

and assembling operations in a robotic assembly or material handling system. The

use of fuzzy reasoning rules in this application simplifies the representation and

search problems for task planning where correct sequences do not depend on exact

knowledge of internal states, but only their precedence relations.
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6.3.1 Fuzzy Sets

Fuzzy sets have been used as a broad conceptual framework for dealing with

uncertainty and information. For the universe of discourse X, which contains all

the possible elements of concern for a particular application, the crisp set is defined

to dichotomize X to two groups: members(those that belong to a subset A) and

nonmembers(those that certainly do not). Because of vagueness in dividing members

of the class from nonmembers, a fuzzy set is introduced by assigning to each possible

individual in X a value representing its grade of membership in the set. For a

garment handling robotic system[9, 101,102], during the process of turning a piece

of cloth into a pair of trousers, the grade of membership of the object, trousers,

would gradually increase. Therefore, this grade corresponds to the degree to which

the partial product of trousers is similar to the concept of the trousers. Larger values

denote higher degrees of membership of the system object. A global fuzzy state of

the system is thus defined as a mapping from the objects in the system to a set

of membership functions defined for each object, or subsets of objects. The formal

definition of the global fuzzy state will be discussed in the following subsection.

In a manufacturing system, 'degree of completion' is one such membership

function which characterizes the objects in the system which will be discussed in

this chapter. Other such global membership functions might be test validation which

would monitor the mutual functional suitability of a set of components as they move

through a process, or tolerance compatibility which would track tolerance relations

as the process proceeds.

For a robot or manufacturing system, the crisp universal set X of objects that

we have defined is X = {Ox, O2,...,Or}. The global fuzzy variable membership

value corresponding to each object or set of objects is Y = {v(O1), v(02),..., v(O,,),

..., v(O_, Oj,...),...}, where v(O_) is e if no token is available for O_. Following a

certain operations sequence, after the system has been working 1 time unit, 2 time
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units, and so on, the global fuzzy states will be labeled as V1, V2, ..., V,,,. The

support of a fuzzy set A in the universal set X is the crisp set that contains all the

elements of X that have a nonzero membership grade in A, which corresponds to a

set of all existing objects with token values not equal to 0 in the system. An a-cut

of a fuzzy set A is a crisp set A_, that contains all the elements of the universal

set X that have a membership grade in A greater than or equal to the specified

value of a, i.e., A_ = {x E Xls(z) > a}, where s(x) is used here to represent the

grade of membership. The set of all levels a E [0, 1] that represent distinct a-cuts

of a given fuzzy set A is called a level set of A. Therefore, AA = {a[s(x) = a for

some x E X}, where AA denote the level set of fuzzy set A defined on X. Finally,

the scalar cardinality of a fuzzy set A is defined on membership grades of all the

elements of X in A. Thus [A[ = _,¢x s(z). For the set of objects in the systems

considered here, the scalar cardinality is changing throughout the processing because

the number and values of tokens are changing when the task is executed.

6.3.2 Fuzzy Petri net

In [17, 18], we proposed the definition of the generalized fuzzy Petri net which

includes three types of fuzzy variables: local fuzzy variable, fuzzy marking variables,

and global fuzzy variables. Local fuzzy variables are Used to model the uncertainty

of the local variables('internal state') of objects; fuzzy marking variables are used to

indicate the uncertainty that events have occurred; and global fuzzy variables are

used to represent the characteristic variables of the global task. In this chapter,

since we discuss the task sequencing of operations sequences, only global fuzzy

variables are used to model the degrees of completion for different global subtasks.

Therefore, the following presentation of the definition of the fuzzy Petri net only

includes global fuzzy variables. The task sequencing problem is solved by imposing

numerical constraints incorporated in the token values in the places. Similarly, the
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fuzzy transition functions defined in the net also operate on the values carried by

tokens.

Definition 6.1 A fuzzy Petri net(FPN) with global fuzzy variables is defined as an

8-tuple:

rPg = (P, T, Qt, I,,, a, _, mr, tti),

where

1) P = {pt, p2, ..., P,} is a finite set of places, n >_ O.

_) T = {tl, t2, ..., t,,;} is a finite set of transitions, m > O. PNT = 0.

3) Qt = {at, q2, ..., q_} is a finite set of state tokens, l > O.

4)/'_ = {I_,, In,..., I_.} is a set of internal state variables which are associated

with corresponding objects or places. This mapping can be described as P ---* I,,.

Global fuzzy variables are modified by changing internal state variables when the

net is executed.

5) a C {P x T} is the input function, a set of directed arcs from places to

transitions. We call each pi where (Pi, tj) E a as an input place of tj.

6) fl C { T x P} is the output function, a set of directed arcs from transitions

to places. We call each pi where (tj, Pi) E _ as an output place of tj.

7) mt : Qt _ {I..Ji(ki, _%), C} is a mapping from a token to a union of 2-tuples

of ki and the kith global fuzzy variable, ak+, or, to a constant, C, which indicates no

global fuzzy variable is attached to the token, ak, is a membership function in a

universe of discourse. In the following discussion we will often refer to the value of

the global fuzzy variable as the 'token value'.

8) ILl: T ---. {fl,f2,... ,fro} is an association function, a mapping from tran-

sitions to corresponding reasoning functions. A reasoning function fi maps a set of

tokens in input places to another set of tokens in output places.

In this chapter, global fuzzy state Sg, which was defined in Section 5.3, is used

to model a system state, a(pi) is written as a i.
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In the following discussion, each token, or group of tokens, will map to a

value, [0, 1], of each fuzzy membership function with which it is associated. In

this sense, the universe of discourse of the fuzzy set includes the prior and current

system states(markings and internal states). The reasoning functions associated

with the transitions, update the fuzzy membership values as the net executes. For

the example of peg-cylinder assembly(Figure 6.1), we define key variables associated

with cutting, lubricating, and inserting of the peg. A simplified view of the resulting

fuzzy membership function is shown schematically in Figure 6.4. The horizontal axes

show the partial internal states represented by cutting and lubrication, while the

vertical axis indicates the degree of membership in the fuzzy set task completion.

Clearly the task is not ready for completion without both cutting and lubrication,

and cutting to a specific diameter should precede lubrication. Figure 6.4 shows

these conceptual relations, while, in practice, these mappings are carried out by the

reasoning functions attached to the FPN transitions.

A transition in a fuzzy Petri net may be ena.bled when the token values of

its input places satisfy some specified fuzzy reasoning rule. For example, one such

reasoning rule for assembly requires the token values of all objects to be assembled

have values not less than a value 6, and therefore be members of a designated level

set. If a transition is chosen to fire, all tokens in the input places are removed and

fuzzy tokens are added to its output places, which may contain values different from

the input values. The values of new tokens will depend on the fuzzy reasoning rule

of the transition.

For the three types of transitions, assembly, disassembly, and IST operations

described in Section 6.2, we can define the following fuzzy transition rules. Initially,

we assume only one soft component exists in the'system. Therefore, we may use

only trj to represent Ui(k_, o'k,), as indicated in the FPN definition, and C = 1. The

case of multiple soft components will be discussed in a later section. Each fuzzy
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Figure 6.4: Conceptual diagram of the fuzzy membership function for the global

fuzzy variable 'task completion' in the peg-cylinder assembly task. The horizontal

axes are internal state variables for 'cutting' and 'lubrication', and are not a com-

plete state description. In practice, this membership function is executed using a

transition reasoning function.
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Figure 6.5: Fuzzy Petri net representation for assembly transition.

transition/reasoning function is defined by an integer, which is called a weighting

factor, WF. In practice, the weighting factors and the thresholds are adjusted

to define appropriate level sets for the transitions sequences. WF is defined as

T _ {1, 2, 3,...}, a mapping from transitions to integer values.

Assembly operation: Oil, Oi2, ..., Oi,, _ Oj. The fuzzy Petri net correspond-

ing to the assembly operation is shown in Figure '6.5.

if min(cr il,ai2,...,o "i') > 0, then a j = min(a q,ai2,...,a;') × WFk. (6.4)

Disassembly operation: Oi _ Ojt, Oj2, ..., Oj_. The fuzzy Petri net corre-

sponding to the disassembly operation is shown in Figure 6.6.

if a i > O, then a j" = a i x WFk x soft(Oj,) + 1 - 8oft(Oj,), (6.5)

where

1 if Oj, is a soft object,
soft(Oj,) = 1 <_ d < I.

0 otherwise,

IST operation: Op _ Oq. The fuzzy Petri net corresponding to the IST

operation is shown in Figure 6.7.

ira p > O, then a q = a p × WFk. (6.6)
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(a) Before tk is t'_:1.

Figure 6.6:

2

(b) After t k iS fil-..d.

Fuzzy Petri net representation for disassembly transition.

B 0 WF k 0_ P q

= p_ ,, P,

Z Z (a) Before t k is fh_t.

Op WF k Oq

©
Pp t_ P,

(b) After t k is fired.

Figure 6.7: Fuzzy Petri net representation for IST transition.
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6.4 An Algorithm for Assigning Global Fuzzy Variables

In this section, we propose an algorithm which maps an ordinary Petri net to

a fuzzy Petri net based on the assumption that a single soft component exists in the

system, and the precedence of key transitions which modify internal states of the

objects which include this component are known a priori.

6.4.1 Prime Number Marking Algorithm

The prime number marking algorithm is based on the fundamental theorem of

arithmetic. This algorithm assigns weighting factors to all transitions in the ordi-

nary Petri net and initial token values to all corresponding places. The fuzzy Petri

net generated using this algorithm assigns prime numbers to transitions, and these

may be mapped onto the token values for degrees of completion of the task. We

call the token values generated by this algorithm prime token values. All feasible

and complete sequences which contain all key operations to change the properties

of the soft objects will be found in the fuzzy Petri net. These sequences are also

guaranteed to have correct precedence relationships among operations.

!

I

= =
m

I

m

I

[]

m

M

Prime Number Marking Algorithm

Input: an ordinary Petri net mapped from an AND/OR net, the prime number

table, soft component C', the number of steps for changing properties of C, s.

Output: a fuzzy Petri net.

step I: Initialization. For all transitions ti(1 < i < m), the weighting factor of tl,

WFi = 1.

I

g

N

I

B
m

m

step _: Pick the first s prime numbers Pt, P_, ..., P, in the prime number table.

step 3: For all IST transitions, pick those transitions which change the properties of

C', and order them according to the required sequence of operations. Suppose

J
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I
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these transitions are tql, tq2, ..., tq,.

step 4: Set WFq, = P1, WFq= = Pa, ..., WFq, = P,, ..., WFq, = P,.

step 5: Map the initial marking from the original Petri net. For each place pj,

1 < j < n, set the corresponding token qi to the same value as in the ordinary

Petri net. If place pj corresponds to an object which represents or contains C,

select a positive integer T, such that

0.1 < 10 -T x WFq_ x WFq= x ... x WFq, < 1.0. (6.7)

step 6: Change the value of a j to 10 -T.

Proposition 6.1 After the original Petri net is mapped to the fuzzy Petri net, the

initial global state for the fuzzy Petri net contains the token values 0 or 1, and the

prime token value for the soft object is 10 -T. The final global state for the fuzzy

Petri net contains the token values of 0 or 1, and the prime token value for the soft

object is 10 -T × P1 x P2 x ... x P,.

6.4.2 Interpretation of Prime Token Values

We assumed initially that only one soft component existed and described

a global fuzzy values assignment algorithm based on prime number sequences of

weighting factors. This assignment guarantees the generation of feasible, complete,

and correctly ordered sequences, and defines a method to describe the degrees of

completion for soft objects. To understand and interpret the prime token values,

we convert them to fuzzy values uniformly distributed between 0 and 1 so that the

resulting token value of the soft object in the final global state is 1.

The possible prime token values for the soft objects are:

10 -T, 10 -T X P1,10 -T X P1 x P2,..., I0 -T × P1 x P2 x ... x P,,
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where T satisfies (6.7). In order to map them to the discrete points on a uniformly-

distributed unit range [0, 1], we use Xo, zl, x2, ..., z, to represent these possible

token values, and we use a function f(xi) to represent the resulting fuzzy values.

Therefore, f(xo) = O, and

1
f(zi) = f(zi-1) + -, i = 1,2,...,s.

3

All feasible fuzzy values here can be considered as the proportions that the first i

key transitions contribute compared to all s transitions. An interpretation sequence

can be generated as follows: 0(not yet processed), ](the first key transition has been

2(the first two key transitions have beenfired and others have not yet been fired), ;

fired and others have not yet been fired), ..., _A-(the first s - 1 key transitions

have been fired and the last one has not yet been fired), l(all key transitions have

been sequentially fired). With these s + 1 points in a two-dimensional coordinate

frame, we can obtain an equation for a curve which passes through these points.

We use Lagrange's Interpolation Formula[91] to derive the formula for this equa-

tion. Lagrange's Formula is used because Zi+l - zi is not a constant. Lagrange's

Interpolation Formula is:

(= - _1)(_- =_)(_- =3)-.. (= - _._ (= - =o)(=- =2)(_- =3)... (= - =.)
f(=) "- (=0-- Z1)(ZO Z2)(ZO --;_3)" "(ZO-- n) _/0 -[" (;_1 -- ZO)(3gl --;_2)(Z1 -- ;C3)'''(=1 -- Zrt)Yl

(= - =0)(=- =1)(=- =_)... (= - _.-1) (6.8)
+'" "+ (=, - _0)(x. - x_)(_. - _2)...(x. - _._,) Y"'

where (xo, yo), (x,,yl), (x2, y_), ..., (x,,y,) are points already known. For our
assumption, the interpolation points are: (10-r,0), (10-rp1,]), (IO-TpIp_,]),

(IO-rP1P=P3, _), ..., (10-rpIP2... Ps, 1). For the fuzzy Petri net representation,

this yields:

1 (=_- lO-V)(z- lO-rPz P2)(z- IO-I'P, P2P_)...(z- lO-rP1...P.)

f(=) = ; (IO-TPz - io-r)(lO-rp_ lo-rP, P=)(lO--rP, - lO-rpzp2p3)... (lO-rp,, lO-rpz ...P,)

(_- lO-r)(=- lO-rp, )(= - lO-rp_p2p_)...(=- lo-rp, ...P,)
4 s(IO-rp,p2 - lO-r)(lO-rPiP2- Io-rp,}(lO-rPIP_- Io-rPIP=P_)...(Io-rp,p_ - 10-rpz ...P,)

i

_I

1

z

mm

m
1

I

1

i

I

I

i
mm

m
m

I

mm

1

J_.o.

(=- lO-r)(=- m-rP=)...(z - lO-rp_... P,-,)
-F1 T . .. _ .. - ...(10- P, .. P,-lO-r)(lO-rP,. P, lo-rp1)...(lO-rPz .P, lo-rp, P,-z)

(s.o) J
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Notice that in the above equation, the first point (10-T,0) vanishes.

suppose z = 10 -T x x', then z' = l0 T × x. Therefore, (6.9) is simplified as

f(x) =
1 (z'- 1)(z'- Pl&)(z'- P1P2Pa)...(z'- P1P2...P,)

- 1)(P, - P,&)(P, - - P,&.. P,)

2
.4

(z'- 1)(z' - P1)(z' - P1P2Pa)...(x'- P1P2 ...P,)

We

, (P,P=- 1)(P,&- Pl)(P1P2- P,P2...P,)

+ ... + (z'- 1)(z' - P1)...(z'- P,P=...P,-I) (6.10)
(& ...P,- 1)(P, ...P, - &)...(P1 ...P,- Pl ...Po-,)"

When we map the prime token values to fuzzy values for each object in the

representation, we also change the weighting factors of all transitions in the fuzzy

Petri net so that the sequence of fuzzy values can be obtained using the same fuzzy

reasoning rules. Suppose there are s key transitions in the system and the initial

prime token value for the soft object is 10 -T. The updated weighting factors for all

3 4 ,,-1 " . The weighting factors for otherkey transitions are: l0 T x 1, 2, _, 5, "" ", ,t-2, ,,'2-1

transitions and the initial global fuzzy state are left as the same.

In the example of the peg-cylinder assembly system in Section 6.3, the param-

eters are: s = 2, P1 = 2, P2 = 3, and T = 1. In this case, (6.10) becomes

l(x'-l)(x'-6)
f(z) = 2 (2- _--'6_

Therefore,

2(x'-l)(x'-2)
+

2 (6- 1)(6- 2)

13

= (x' - 1)(-3x' + _-_).

when z = 0.1, z' = 0.1 x 101 = 1, f(z) = O,

when x = 0.2, z'= 0.2 x 101 = 2, f(x) = 1 x (-_o + _) = 0.5,

when :r = 0.6, z'= 0.6 x lO' = 6, f(x) = 5 x (-_ + _) = 1.0.

Using the prime number marking algorithm, the ordinary Petri net shown

in Figure 6.3 can be mapped into a fuzzy Petri net as shown in Figure 6.8. The

initial global fuzzy state is shown in this net. The soft objects in this example are

P, RP, RPM, RPL, RPC, PC. The key transitions are t5 and tg. Therefore,

WF5 = P1 = 2 and WF9 = P2 = 3. Because 10 -1 x WF5 x WF9 = 0.6 satisfies

w
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(6.7), _r2 of the initial global state is thus 0.1. The token value for place PC in the

final global state is 0.6.

6.4.3 Feasible Sequences in the Fuzzy Petri Net

The following theorem provides a method to use the feasible global fuzzy

states obtained during the generation of the fuzzy Petri net, to search for feasible,

complete, and correctly ordered sequences efficiently.

Theorem 6.1 The Fundamental Theorem of Arithmetic

If Pi and qi are positive primes, and if

n m

o= II pT'=II q?,
i=1 j=l

where

and

1 <pl <P2 <...<P,,-1 <P,,

1 < ql < q2 < .-. < qm-1 < qm,

then n = m, pi "- qi and c_i = _i, every positive integer has a composition into

positive prime factors, which is unique apart from the order of the factors.

Proof. See [94, p. 263].

Theorem 6.2 Using the prime number marking algorithm, all sequences generated

from the fuzzy Petri net of which each transition can only be fired at most once, are

feasible, complete, and hold correct precedence relationships among key transitions,

if and only if the places corresponding to soft objects can only hoid the following

order of token values: 10 -T, 10 -T × Pt, 10-' x P1 x P2, ..., 10 -r x Pl × P2 ×... x P,,

where P1, P2,..., P, are the first s primes.
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Proof. The values of all weighting factors WFI, WF2, ..., WF,,, are 1, P1, P:,

..., P,, 1 <_ s < m. If the sequences are feasible, all feasible token values are 10 -T,

I

tim

I



t_
150

t _

LJ

° •

H
r.m

H

m

u

tl

t16

-- 1 t12

p3

t7

1

pl R P

_1 t4

RPL RPM

t9 tl0 t.5 t6

3 1 2 1

LUB CUT

M

Figure 6.8: The fuzzy Petri net mapped from the previous ordinary Petri net.
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i0-T x PI, I0-r x P2, .-.,10-T x P,, I0-T x P, x P2, .-.,I0-T x PI x ...x P,, i.e.,

C_ + C{'+ C_ +... + C_ - 2s possibletoken values.Ifthe sequences alsohold correct

precedence relationships on key transitions, then the weighting factor of the first key

transition that the developin 9 sequences meet should be WFi. All possible token

values are now reduced to 10 -T, 10 -T x P1, 10 -T x Px x 0 where O is a product of at

most s - 1 elements which do not contain P1. Therefore, if the developing sequences

meet the second weighting factor which is not equal to 1, all possible token values

are now reduced to 10 -T, 10 -T x/>1, 10 -T X P1 x P2, 10 -r X P1 x P2 x O', where O'

is a product of at most s - 2 elements which do not contain P1 and P2. Continuing

this procedure, all possible token values that the developing sequences will meet are:

10 -T, 10 -T x PI, 10-T x P1 x P2, ..., 10-T x P1 x P2 x ... x P,, i.e., s + 1 possible

states. If the sequences are also complete, the sequence should follow all possible s

weighting factors which are not equal to 1. Therefore, the sequences will meet all

possible token values. The necessary part of the theorem is thus proved.

Suppose the soft objects hold the following sequence of token values: 10 -T, 10 -T

xP1, i0-T x Px x P2, ..., i0-r x PI × P2 x... x P,. Notice that at thistime, we are

given allresultsof products. Using Theorem 6.1,we willget unique compositions

into positive prime factors and I0-T, and then order the prime factorsinside the

form of products. A unique ordered sequence for each token value will be obtained.

The first value corresponds to firing any number of transitions(with no duplication)

which do not contain a weighting factor not equal to 1. The second value shows that

besides firing any number of transitions which do not contain a weighting factor of

a key transition, tql is also fired, and then any number of transitions of a weighting

factor equal to 1 can be fired. We continue this enumeration and find all values

in the above sequence are feasible. The order of the transitions in the sequence

obviously holds the correct precedence relationships, i.e., we should fire tql first, and

then fire tq2, and so on, and at last fire tq,. Moreover, the sequences contain all

m
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n

U

possible copies of key transitions and are therefore complete.

Q.E.D. []

The corollaries listed below directly follow from Theorem 6.2.

Corollary 6.1 For a fuzzy Petri net marked using the prime number marking algo-

rithm, mt(Qt)= {1, Io-T, IO-T xp1, IO-T xPl xP_, ..., lO-T xP_ xP2x...xP,}.

Corollary 6.2 The search in the fuzzy Petri net is halted at a token value o"_

m_(Q_), but will not exclude any feasible, complete sequence which has correct

precedence relationships among operations.

Corollary 6.2 is used to search all possible correct sequences which satisfy the

three properties from the fuzzy Petri net off-line. When a set of enabled transitions

are found for the development of partial sequences, those transitions which lead to

undesirable token values in the corresponding output places are discarded.
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6.4.4 Multiple Assigned Key Transition Sequences

In the previous sections, it was assumed that the order of the key transitions

is assigned in advance and only one order is feasible. However, in practice, it may

often occur that more than one partial ordering of key transitions are possible. For

example, suppose t_ and tb are key transitions, both sequences ... t_... tb... and

• .. tb... t_... may be feasible. The plan representation should include feasible and

complete sequences which satisfy either ordering of key transitions.

The problem of multiple partial orderings may be solved in a straightforward

manner by enumerating all possible orderings of process steps and constructing the

union of the plans from each set.

In general, if we have k feasible assigned key transition sequences, $1, S_,..., S_.

For each Si, we use the planning strategy described above and obtain all feasible,

complete, and correctly ordered sequences represented as {plan(S_)} which is a set of

sequences. Then the final complete sequence set can be obtained as [.J_=_ {plan(S_)}.

m
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6.5 Fuzzy Representation for Multiple Soft Components

Often several soft components may be present in a complex system. For ex-

ample, more than one type of part might need to be processed in a given system,

and then be assembled. The properties for all these soft components may change.

In this ease, a more general marking and sequencing algorithm is required to permit

correct reasoning when multiple soft components take part in a transition. This

section describes an algorithm which provides a consistent strategy and reduces to

the previous reasoning mechanism when a single soft component is present.

6.5.1 Fuzzy Reasoning for Multiple Soft Components

i

m
I

m

m

i

We assume we have r soft components labeled as C,, (_2,..., C,, respectively. m
I

For any soft object O:

1 if O is the j type soft object,
softj(O) = 1 < j < r.

0 otherwise, i

An assembly or subassembly may contain both C"j and other soft components:

f 1

softij...k(O) =

t 0

if O is the i-j-...-k type soft object,

otherwise,

l <_i,j,...,k<_r.

|

I

The i-j-...-k type soft object is defined as an assembly or subassembly containing

all the soft components labeled as Ci, Cj ..., and C'k, and no other soft components.

Based on these definitions, a strategy which uses a prime number sequence

to represent key transitions with multiple soft components was presented in [12].

In that approach, P1, Pr+l, P2r+1, ..., P(,I-1}_+1 was used to represent the 1st

subsequence of prime numbers for marking the key transitions corresponding to

the 1st soft component. P2, P,+2, P2,+2, ..., P(,2-1),+2 was used to represent the

2nd subsequence of prime numbers marking those corresponding to the 2nd soft

component. Continuing this procedure, Pr, P2_, P3,, ..., P(,,-l),+,(=,,,) was used

i

I

m

I

I

m
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u

r -

m

m

to represent the rth subsequence of prime numbers for the rth soft component. In

this chapter, we will use a related, but simpler, approach which assigns the same

sequence of prime numbers for the key transitions corresponding to different kinds

of labeled, or 'colored', soft components. We can generalize the representations in

(6.4), (6.5) and (6.6) to obtain the corresponding fuzzy reasoning rules for output

places for three types of transitions, as follows:

Assembly operation: 0il, 0i2,..., Oi, ---* Oj. The objects 0il, 0/2,..., Oi,, Oj

may contain more than one soft component. Therefore, the representation for those

kinds of soft objects should be distinguished from other objects and at any given

time, we should be able to reason about the characteristics of these objects. Before

we give the function for the assembly operation, we first give the definition of rain

and trs for each object. We also assume t,, will function on the fih soft component.

if softj(Oio) = 1, then rnin(Oi,) = aj and trs(Oi.) = (j, aj x WF_),

i

m

k

L:

=
i

if softij...k(Oi,)= l, then min(Oi,)= min(cri,aj,...,_rk) and

trs(O,,) = (i,a,)U(j,_r j x WF_)U...U(k,_rk) ,

otherwise, min(Oi,) = 1 and tr.s(Oi.) = 0,

i <s<u.

The generalization of formula (6.4) is:

u-

q

w

where

if min(min(O,,),min(O,2),... ,rain(O,,)) > O, then

u

a I = soft(Oj) x U trs(Oi.) + 1 - soft(Oj),
!=1

soft(Oj) = y_ soyti(Oj) + _ soytik(Oj) +... + _ aoft,=...r(Oj).
i ik 12...r

(6.11)

w
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Disassembly operation: Oi ---* Oil, Oj2, ..., Oj_. The generalization of formula

(6.5) is:

if min(O_) > O, then a" = soft(O,) x trs(O,) + 1 - soft(O,),

jt < s < jr. (6.12)

IST operation: O_ _ Oq.

I

m

l

m
I

if min(Op) > O, then a q = soft(Oq) × trs(Oq) + 1 - soft(Oq). (6.13) R

6.5.2 Generalized Prime Number Marking Algorithm

For a system with more than one soft component, we should know the status

of the current objects at each step of the process, i.e., which soft components the

objects contain, and the degree of completion for this soft object as well as every soft

component it contains. For the sake of simplicity, we assume all soft components in

the system are independent of each other, i.e., there are no relations between the

orders of key transitions for any two soft components. Moreover, we still want to

guarantee the precedence relationships among operations for each soft component,

so that the combinations of several soft components will still hold this property.

The prime number marking algorithm is generalized as follows:

Generalized Prime Number Marking Algorithm

Input: the ordinary Petri net mapped from an AND/OR net, the prime number

table, soft components CI, 6'2, ..., (Tr, the numbers of steps for changing properties

for each soft component $1, $2, ..., S,.

Output: a fuzzy Petri net.

step I: Initialization. For all transitions tj(1 _< j _< m), the weighting factor of tj,

WFj = 1.

i
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step 2: For all IST transitions, pick those transitions which make the changes

of properties for C'_, 1 _< i <: r, and order them according to the required

sequence of changes. Suppose these transitions are t_, t_, t i• " " ' $i"

step 3: For 1 < i < r, set WF( = P1, WFi2 = P2, ..., WFi,, - Ps,.

Z -

g

m

o °

w

w

step 4: Map the initial marking from the original Petri net. For each place pj,

1 < j < n, set the corresponding token value a i to have the same token value

as in the ordinary Petri net.

step 5: For each C'_, 1 < i < r, select a positive integer T:, such that

o.1< lO × wF' × WF' ×...× WI: , < 1.0. (6.14)

step 6: Mark o"j the value of (i, 10-T'), if Oj contains only C'i; Mark o'J the value of

(il, 10 -T'_ ) U(i2, 10 -T'2) U... (i,,, 10 -T'-), if Oj contains soft components C'_z,

C'i2, ..., Ci,, 1 _ u < r.

An example of this case is obtained by adding to Figure 6.1 a visual sensor

mounted near the gripper of the robot arm. Before the peg is inserted into the

hollow cylinder, the robot should move near the cylinder to sense the exact insertion

position. The sensing operation refines the internal state(size and position) of the

cylinder, and for this example the cylinder C becomes a soft object. This sensing

operation can be done anytime the robot is not holding anything. We model the

combination of the two interacting components R and C as a subassembly marked

RC. The sensing process is represented as SEN. The corresponding updated

AND/OR net and the ordinary Petri net is shown in Figure 6.9 and Figure 6.10,

respectively•

For this example, the resulting updated fuzzy Petri net is shown in Figure

6.11. There are two soft components, peg P and hollow cylinder C in the system.

The parameters are r = 2, $1 = 2 and $2 = 1. ts and t9 are key transitions for P
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U

Figure 6.9: The updated AND_OR net.

and tlr is the key transition for C. Therefore, WFs = P1 = 2, WF9 =/>2 = 3, and

WFlr = P1 = 2. Because 10 -1 x WFs x WF9 = 0.6 and 10 -1 x WFlz = 0.2 satisfy

(6.14), a 2 = (1,0.1) and a 3 = (2,0.1). The token value for place PC in the final

marking is (1,0.6) U(2, 0.2).
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6.5.3 Interpretation of Fuzzy Values for Multiple Soft Components

We may interpret the case of multiple soft components in analogy to 'colored'

Petri net models[54]. In this context, we say different soft components have different

colors. A soft object may contain different kinds of soft components, and we call this

object a composite object. However, we assume that the colors of soft components

in one object will not be mixed up, i.e., the colors are independent. Knowing the

number of soft components in the system as well as the sequence of key operations for

each soft component, we can map the the weighting factors of these key transitions

sequences of prime numbers depending on the color of the soft object. Therefore,

at any given time, we can get a unique decomposition of primes corresponding to
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Figure 6.10: The updated ordinary Petri net.

by a symbol: %'.

CUT*

The names of soft objects are followed
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L

one soft component such that a correct precedence relationship can be verified to

be followed.

As in the case of a single soft component, we can map the prime token values to

fuzzy values uniformly distributed in [0, 1] for each different color of the object. For

a soft object which contains more than one soft component, the degree of completion

of this soft object can be understood by looking at the degrees of completion of the

soft components independently. For the object PC shown in Figure 6.11, if the

cutting job has been done on P, and neither sensing on C nor lubricating on P

starts, the interpreted fuzzy value of P is 0.5 and the value of C is 0, as discussed in

the last section. After we finish sensing on C and lubricating P still doesn't start,

the value of P is 0.5 and the value of C is 1. After all jobs are finished on soft

components P and C, the value of P and C are both 1.

Because the prime number representation and the marking for different colors

keep token values of soft components inside a soft object independent, it is conve-

nient to reason about the degree of completion for any soft component in an object.

If we map the prime token values for multiple soft component case to fuzzy val-

ues, we are also able to obtain straightforward modification for weighting factors

of transitions to keep fuzzy reasoning strategy valid for reasoning fuzzy values, as

indicated in the last section. This is a principal advantage to using prime number

marking for the multiple soft component case.

W

N

w

6.6 Simulation Results and Conclusions

For the example shown in Figures 6.1, 6.2 and 6.3, using the ordinary Petri net

directly mapped from the original AND/OR net, we obtain 13 feasible sequences to

accomplish the cylinder assembly task. However, when we search the fuzzy Petri

net mapped from this ordinary Petri net(see Figure 6.8), we obtain only one se-

quence which is feasible, complete and maintains correct precedence relationships
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for operations, i.e., tl t3 t5 t6 t4 t8 t9 tl0 t7 t12 t13.

For the example with added sensing shown in Figure 6.9, when we search all

feasible sequences, we get the following 39 sequences:

*** Sequence 1 ***t15 t17 tl8 t16 tl t12 t13

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

2 ***t15 t17 tl8 t16 tl t8 t9 tl0 t7 t12 t13

3 ***t15 t17 tl8 t16 tl t8 t9 tl0 t7 t3 t5 t6 t4 tt2 t13

4 ***t15 t17 tl8 t16 tl t8 t9 tl0 t7 t3 t4 t12 t13

5 ***t15 t17 tl8 t16 tl t8 t7 t12 t13

6 ***t15 t17 tl8 t16 tl t8 t7 t3 t5 t6 t4 t12 t13

7 ***t15 t17 tl8 t16 tl t8 t7 t3 t4 ti2 t13

8 ***t15 t17 tl8 t16 tl t3 t5 t6 t4 t12 t13

9 ***t15 t17 tl8 t16 tl t3 t5 t6 t4 t8 t9 tl0 t7 t12 t13

10 ***t15 t17 tl8 t16 tl t3 t5 t6 t4 t8 t7 t12 t13

11 ***t15

12 ***t15

13 ***t15

14 ***t15

15 ***t15

16 ***t15

17 ***t15

18 ***t15

19 ***t15

20 ***t15

21 ***t15

22 ***t15

23 ***t15

24 ***t15

t17 tl8 t16 tl t3 t4 t12 t13

t17 tl8 t16 tl t3 t4 i8 t9 tl0 t7 t12 t13

t17 tl8 t16 tl t3 t4 t8 t7 t12 t13

t16 tl t12 t13

t16 tl t8 t9 tl0 t7 t12 t13

t16 tl t8 t9 tl0 t7 t3 t5 t6 t4 t12 t13

t16 tl t8 t9 tl0 t7 t3 t4 t12 t13

t16 tl t8 t7 t12 t13

t16 tl t8 t7 t3 t5 t6 t4 t12 t13

t16 tl t8 t7 t3 t4 t12 t13

t16 tl t3 t5 t6 t4 t12 t13

t16 tl t3 t5 t6 t4 t8 t9 tl0 t7 t12 t13

t16 tl t3 t5 t6 t4 t8 t7 t12 t13

t16 tl t3 t4 t12 t13
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*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

*** Sequence

25 ***tl5 t16 tl t3 t4 t8 t9 tl0 t7 t12 t13

26 **Xtl5 t16 tl t3 t4 t8 t7 t12 t13

27 **_'tl ti2 t13

28 ***tl t8 t9 tl0 t7 t12 t13

29 ***tl t8 t9 tl0 t7 t3 t5 t6 t4 t12 t13

30 ***tl t8 t9 tl0 t7 t3 t4 t12 t13

31 ***tl t8 t7 t12 ti3

32 ***tl t8 t7 t3 t5 t6 t4 t12 t13

33 ***tl t8 t7 t3 t4 t12 t13

34 ***tl t3 t5 t6 t4 t12 t13

35 ***tl t3 t5 t6 t4 t8 t9 tl0 t7 t12 t13

36 ***tl t3 t5 t6 t4 t8 t7 t12 t13

37 ***tl t3 t4 t12 t13

38 ***tl t3 t4 t8 t9 tl0 t7 t12 t13

**_' Sequence 39 ***tl t3 t4 t8 t7 t12 t13

When we map this updated ordinary Petri net to a fuzzy Petri net(see Figure

6.11) with two soft components, only one sequence is obtained. This is equal to

Sequence 9 in the above sequence set. Therefore, we can conclude that even though

the searching effort for transition sequences as well as the number of sequences

obtained for an ordinary Petri net will increase exponentially relative to the in-

creased number of transitions and places, the number of sequences searched in the

corresponding prime number marked fuzzy Petri net may be strongly restricted by

ordering constraints on the process steps. The fuzzy Petri net thus appears to be an

efficient tool for modeling and representing all feasible, complete process sequences

which maintain the correct precedence relationships.

One of the fuzzy Petri net variable types, the global fuzzy variable, is used

in this research to efficiently search for correct operations sequences from a fuzzy
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Petri net to reachfrom an initial state to a final state while satisfying precedence

and completenessconstraints. When the plannedsequenceis developing,the global

values carried by tokensare subject to change. If more than one soft component

is handled, a generalizedassignmentalgorithm can be used so that a colored se-

quenceof prime markingswill beusedfor eachdifferent soft component. The prime

token valuesused for searchingcan also be interpreted as a fuzzy value uniformly

distributed between0 and 1. When wesearchthe sequencesin the fuzzy Petri net,

all sequenceswhich will be incompleteor having incorrect precedencerelationships

will bediscarded. Computation time and storageis reducedsinceit is not necessary

to store those incorrect sequences.
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CHAPTER 7

SENSOR-BASED ERROR RECOVERY FOR ROBOTIC TASK

SEQUENCES USING FUZZY PETRI NETS

L _

m

m

During the execution of a task based on an off-line planned sequence of operations, a

robot workcell may encounter errors or events which cause the expected sequence to

be unexecutable. This chapter addresses the problem of representing and automati-

cally invoking error recovery sequences in response to sensed errors during execution.

The approach is based on the use of a fuzzy Petri net model in which sensory verifi-

cation operations determine local fuzzy variables associated with the objects in the

net. The outcome of a sensory verification operation may change the local fuzzy

variables and leads to an altered firing sequence and resulting error recovery. The

fuzzy Petri net itself is systematically derived from an AND/OR net model of the

task[10, 11], and carries guaranteed properties of safeness, liveness, and reversibility,

while the fuzzy assignment algorithm for global fuzzy variables[12, 20] guarantees

precedence of subgoal operations. An algorithm is described for adding sensory

verification transitions and associated fuzzy transition rules which implement error

recovery through retry or alternative sequence mechanisms. An executable fuzzy

Petri net could be obtained using a feasible, complete, and correctly ordered se-

quence.

7.1 Introduction

In previous work, we have used AND/OR graphs[47] and nets[10, 11] to repre-

sent geometric relations and operations in robotic assembly workcells and materials

handling systems. Based on the characteristics of components and relations which

may change their properties during the execution of plans, we introduced the con-

cept of a fuzzy Petri net representation and a method of reasoning about correct

164



165

precedencerelationships among task subgoals[12,20]. In the fuzzy Petri net, a

prime number marking algorithm guarantees strong numerical constraints on the

precedence and reduces the set of feasible sequences. Using fuzzy Petri nets, we can

search and obtain all possible sequences which guarantee the properties of feasibil-

ity, completeness, and correct precedence relationships for subgoal operations. The

resultant sequence set from the fuzzy Petri net requires less computer storage and

time to search for good solutions compared with the strategy used in [10, 11]. The

token values for all places in the fuzzy Petri net can be interpreted as fuzzy values

in [0, 1] which represent the degree of completion for each object in the system. The

fuzzy values representing internal state variables which are defined as local fuzzy

variables are used in this chapter to derive a sensor-based verification and reasoning

strategy for exception handling.

Task sequence planning is normally performed off-line using a high-level rep-

resentation of goals and constraints. Task sequences generated based on a system

model and an initial and final state are expected ordered operations sequences, i.e.,

with the assumption that no abnormal events will happen. However, at execution

time some unexpected conditions may occur; for example, some components may

be missing, some objects may be put at incorrect positions, or, the orientations of

some components may not be the same as stored in the computer. Therefore, prac-

tical automated manufacturing systems often incorporate an enormous amount of

control code for error handling and recovery[41]. Some approaches to error recovery

for assembly workcells have been reviewed in Section 2.4.

In this chapter, we address the problem of automatically invoking error re-

covery sequences within a set of possible execution sequences described by a fuzzy

Petri net. The fuzzy Petri net incorporates many possible feasible sequences, and

the resultant firing sequence depends on the fuzzy values in the net. A sensory ver-

ification operation is used to observe the system state, and the outcome of sensory
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verification may change the local fuzzy variables associated with the objects leading

to an altered firing sequence. If the fuzzy Petri net is correctly designed, this altered

firing sequence will eventually lead to a goal state by correctly executing an error re-

covery procedure. A main goal of this chapter is to introduce a systematic approach

to synthesis of this fuzzy Petri net with sensor verification and error recovery.

w

w

r_
w

L

w

7.2 Fuzzy Petri Net Representation of Task Level Operations

The definition for the generalized fuzzy Petri net[12, 14, 17, 18] is shown in

Section 5.2. In this definition, p may be regarded as a fuzzy internal state variable.

In practice, these variables may also be used as conventional internal state variables.

Each place in the FPN represents an object. Therefore, the local fuzzy vari-

ables and fuzzy marking variables are associated with the objects. In the discussions

in this chapter, we only use global fuzzy variables and local fuzzy variables for the

representation of sequence planning and error recovery, respectively, fi has a rule for

reasoning about local fuzzy variables, rp(t_)(written as r_'), and a rule for reasoning

about global fuzzy variables, r_,(t_)(written as r_'). The fuzzy marking variable is

also useful in error recovery, since it models the uncertain outcomes of operations,

but this will not be discussed in this chapter.

Because there are three different kinds of variables associated with places and

tokens in the FPN, three different system states may be defined[17, 22]. Two of

them, local fuzzy state and global fuzzy state, are used in this chapter and their

definitions were given in Section 5.3. Here, p(p_) is written as p_ and o'(p_) is written

as o'i. A local fuzzy variable represents the internal state of an object.

In this chapter, the fuzzy Petri net representation is used as follows. Each

place, pi, represents a system geometric substate, or subassembly, and Oi corre-

sponds to a node in the AND/OR net. For example, the state "robot holding an

object" might be a place, pi. Each transition, tij, represents a state change signified
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by the transfer of tokens from input place set U_{pi} to output place set [.Jj{pj}.

The operation "robot placesthe object on the table" might be a transition, a and 9

are the mappings which define feasible transitions among system states for a given

workcell.

Each token in the fuzzy Petri net may take on some fuzzy membership value,

m,(qj) = Lli(ki, ak,), or, e, which constitutes a global fuzzy state of the net, Sg. In

our definition of the net, the global fuzzy variable constitutes a 'degree of completion'

of a process. Each transition has a weighting factor WFi which affects the fuzzy

value of the token when the transition is fired. The changing of local fuzzy variables

follow specific reasoning rules[17, 18]. The rules governing the mapping of fuzzy

values of tokens across transitions will be described in the next section.

In [12], we showed that a set of fuzzy values of tokens and transition weights

could be developed which guarantee that a set of designated operations, called key

transitions, would be executed in a designated precedence order. The prime number

marking algorithm[12, 20] used to synthesize this net imposes numerical constraints

on the fuzzy values of tokens in order to enforce these precedence relations. In this

approach, the key transitions may be viewed as subgoals in the task which yield key

states and have fixed prior order constraints. Enforcing these constraints implicitly

in the net representation leads to efficient search for feasible solutions.

Figure 7.1 shows an example

Figure 6.1. In this task, the robot

machine, then to the lubricating

hollow cylinder to accomplish the

arm is used to identify the precise

of a robot workcell which is a modified version of

picks up the raw peg, transfers it to the cutting

machine to process the peg, and finally to the

assembly. The sensor on the head of the robot

position of the hole inside the hollow cylinder.

In modeling real processes, we do not need to represent all tokens with fuzzy

values, since not all objects up_dergo changes in properties or relations during the

process. For convenience, we will define a class of objects which do undergo these
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Figure 7.1:
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Machine

A peg-cylinder assembly system.
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changes as soft objects:

Definition 7.1 Soft components and soft objects: A soft component is a single part

in a system whose "properties" change during execution of plans. For purposes here,

these are mostly often geometric properties, such as the change in shape of the peg

in example 1.

A soft object may be either a soft component, or an assembly or subassembly which

includes a soft component, or an object with soft relation between parts.

Soft components and objects are characterized by soft parameters, which are

internal state variables such as geometric parameters of shape or relative positions

of parts in an assembly, but may also include mechanical properties such as surface

characteristics. In this chapter, some of these soft parameters will be modeled by

local fuzzy variables.

In example 1, one soft parameter of the peg is the diameter, which is changed

by the cutting operation, and the second is surface lubrication state which is changed

by the lubrication operation. A soft parameter of the object RPC is the geometric

relation of the peg axis to the cylinder axis which will determine whether insertion is

feasible. In Section 7.4, the sensory verification operation will be used to observe the

current values of soft parameters during execution, map them to fuzzy membership

functions, and control the resulting flow of the sequence using fuzzy reasoning at

the transitions.

The corresponding fuzzy Petri net for the peg-cylinder assembly example is il-

lustrated in Figure 6.11. The weighting factors assigned to transitions, and the initial

global fuzzy state are shown. The fuzzy firing rules for token values are described in

Section 7.3. The threshold 6 is 0.05. All feasible objects in the system are mapped to

places in the net: pl:R(robot), p_:P(peg), ps:M(cutting machine), p4:L(lubricating

machine), p3:C(hollow cylinder), p6:RP(robot grasping peg), pl0:RPM(robot trans-

ferring peg to cutting machine), p_2:CUT(cutting job), pg:RPL(robot transferring
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peg to lubricating machine), pxl:LUB(lubricating job), p13:RC(robot grasping hollow

cylinder), pla:SEN(sensing job), ps:RPC(robot inserting peg into hollow cylinder)

and pr:PC(peg and cylinder assembly). The global fuzzy state of this fuzzy Petri

net is constructed based on a required precedence of subgoal operations: cutting(ts)

precedes lubrication(t9) precedes insertion(t12), and position sensing(t_r) precedes

insertion(tl2), ts, t9 and qr are key transitions in the system, and are defined a

priori. Based on the prime number marking algorithm[12, 20], the mapping from

transitions to integer values is WFlr = 2, WFs = 2, and WF9 = 3, and all other

weighting factors are equal to 1. From the same algorithm, the initial global fuzzy

state of (Pl, p2, ..., P_4) r is found to be (1.0, (1, 0.1), (2, 0.1), l.0,1.0, e,e,e,e,e,

e, e, e, e) T. We have shown in [12] that only one shortest sequence, which is fea-

sible, complete, and maintains correct precedence relationships, is obtained, i.e.,

tlstlrtlstlstlt3tstst4tst9tlotrt12t13. To find this sequence, we have assumed that each

transition can be fired at most once. In this sequence, the robot goes to the hollow

cylinder to sense the position of the hole before it carries the peg for machining.

For the purposes of planning this sequence, the sensing operation is assumed

to be deterministic and always successful. In Section 7.4, we introduce a nonde-

terministic fuzzy Petri net in which the outcome of the sensory measurement may

affect the sequence at execution time.

7.3 Fuzzy Transition Rules: Global Fuzzy Variables

During the execution of a task sequence, the system reasons about fuzzy values

of tokens and the local fuzzy variables of the objects after a transition a fired. In

this section, we assume the local fuzzy variables are not affected by transitions, and

focus on transition reasoning rules affecting global variables. In the next section, we

will discuss the role of local fuzzy variables in transition reasoning rules. A set of

fuzzy transition rules for global fuzzy variables in the case of one soft component is

H

H
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(a) Before t k is fired. (b) After tk is fired.

Figure 7.2: Fuzzy Petri net representation for assembly operation. The local fuzzy

variables for Oil, Oil, and O r are pil, Pi2, and pj, respectively. The values of tokens

in the places of Oq and Oi: are a i' and a i: in (a) and that in the place of Oj is a j

in (b), respectively. The weighting factor of tk is WFk.

given as below. If a system contains more than one soft component, a generalized

version of fuzzy transition rules can be used[12, 20]. The symbol 0 in the following

discussion refers to the threshold of reasoning rules.

Assembly operation: Oq, Oi:, ..., 0_, _ Oj. The fuzzy Petri net corre-

sponding to the assembly operation with two input places is shown in Figure 7.2,

and obeys the following fuzzy transition rule:

if min(ai_,o'i_,... ,o "i") > 0, then o"j = rnin(o'i_,_ri2,... ,o "i_) × WFk. (7.1)

Since WF_, >_ 1, this rule assigns the same or increased completion value to

the output token as that held by the minimum input token.

Disassembly operation: Oi _ Oj_, O_, ..., Oj,. The fuzzy Petri net

corresponding to the disassembly operation with two output places is shown in

Figure 7.3, and obeys the following fuzzy transition rule:

n
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if cr i > O, then a j" = _i × WF_ x soft(Oj,) + 1 - soft(Oj,), (7.2)
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(a) Before t k is fired. (b) After t k is fired.

Figure 7.3: Fuzzy Petri net representation for disassembly operation. The local

fuzzy variables for Oi, Oil, and O_2 are pi, pj,, and PJ2, respectively. The values of

tokens in the places of Oil and Oj2 are a j' and a j2 in (b) and that in the place of

Oi is a i in (a), respectively. The weighting factor of tk is WFk.

Op WF k Oq 0 v WF k Oq

t k t k

(a) Before t k is fired. (b) After t k is fired.

Figure 7.4: Fuzzy Petri net representation for IST operation. The local fuzzy

variables for Ov and Oq are pv and pq, respectively. The values of tokens in the

places of Op and Oq are a v and a q in (a) and (b), respectively. The weighting factor

of tk is WFk.

where

1 if Ojd is a soft object,
soft(Of,,) = 1 < d < I.

0 otherwise,

Since WF_ >_ 1, this rule assigns the same or increased completion token value

to each soft object and leaves other objects at 1.

Internal State Transition(IST) operation: Ov _ Oq. The fuzzy Petri net

corresponding to the IST operation is shown in Figure 7.4, and obeys the following

fuzzy transition rule:

if a v > O, then a q = crp x WF_. (7.3)

==
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Since #/k > 1, this rule assigns the same or increased completion value to the

output token.

7.4 Execution of Plans on the Fuzzy Petri Net

During the real-time execution of a selected sequence which is feasible, com-

plete, and maintains correct precedence relationships for key transitions, some of

these key transitions may not cause the expected results. This uncertainty in local

parameters can be represented by local fuzzy variables associated with objects. For

example, we assume the input place of a key transition ti, namely pj, contains a

token with fuzzy value 04 before t, is fired. The weighting factor for ti is WFi. As

mentioned in the previous discussions, the prime token value in the output place

p_ is o'J' = (rJ x WFi, assuming p(pj,) is fixed. In the real-time execution of the

planned sequence, it may happen that p(pj,) is changed because errors may occur

during the execution of ti, while the global token value of a j' does show that ti has

been successfully executed.

To guarantee a correct fuzzy token moving in the Petri net, we introduce a

sensor which verifies the states for soft objects, especially after key transitions are

fired in the system. In order to incorporate such sensor-based selection of operations,

we need to define fuzzy rules governing an additional type of Petri net module cor-

responding to mutually ezclusive operations for the execution of plans on-line. This

module reasons about the local fuzzy variables based on the input local variables.

Therefore, during the execution of a task sequence, the selection of enabled tran-

sitions not only depends on token values(global fuzzy variables), but also on local

fuzzy variables. In a fuzzy Petri net model used for planning, the alternative choice

of mutually exclusive operations is resolved by the off-line search for an expected

plan. However, real-time execution of the net requires local resolution of this choice

and will depend on the current local variables which occur. The fuzzy transition
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(a)Beforetkiisl'uvxl. (b) After tk2 iSf'trcd.

Figure 7.5: Fuzzy Petri net representation for ME transitions. In (a), The global

fuzzy variables and local fuzzy variables of O_ are a_ and pc. In (b), the global fuzzy

variable of Og_ is ag2. The weighting factors of tk_, tk2, ..., tku are WFk_, WFk2, ...,

W Fk, , respectively.

rules for this important case are given below.

W
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7.4.1 Mutually Exclusive Transitions

The fuzzy Petri net corresponding to the mutually exclusive operation: (O_ ---+

O9_ OR O_ _ Og2 OR... OR O_ ---* Og,), is shown in Figure 7.5. Here, sensors are

introduced to verify the states for soft objects. Therefore, the following operations

may be chosen based on fuzzy sensory information. For the sake of simplicity, we

assume the local fuzzy variables appearing in the following discussions are fuzzy

singletons. The results obtained can be generalized to the case of general fuzzy

numbers. The transitions which represent this type of operation are called mutually

exclusive, or, ME, transitions.

The fuzzy rule governing this mutually exclusive firing strategy is described

as follows:

if O <_ p, < Ox, then a gt = WFk,

if 81 <_ p_ <0 2 , then c g_= WFk2

X fie Gg2 = o.g3 = ... = o,g_ _. O;

X G e, Gga = G g3 "-- ... --" G 9" -- O;

=

- =
I
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if 0 i-_ _< p, < 0 i, then a g' = WFk, x a _, a91 = ... = ag_-I = ag,+_ = ... = ag, = O;

°,,

if 0 _-x <_ Pc <_ 0 _, then a g" = WFk_ x o"_, ag' = ag2 = ... = ago-, = 0. (7.4)

Notice that the range [0, 0r] has been divided to v subranges, [0, 01), [01, 02), ...,

[0 "-1, 0"], which are mutually exclusive. Only one transition from tg_, t92,..., tgo will

be fired. The selection of the transition is based on the real-time value of pc. The

ME transition acts like a "case" conditional statement in a high-level programming

language.

7.4.2 Deterministic and Nondeterministic Fuzzy Petri Nets

In this discussion, we have assumed that each transition ti in the net has

a constant weighting .factor WFi, i.e., the fuzzy values of tokens in output places

for ti can be directly determined from the fuzzy values of tokens in corresponding

input places. This assumption is valid from the planning point of view where we can

guarantee a selected feasible sequence to reach from the initial state to the final state

when this sequence is executed. However, this assumption is not always correct from

the execution point of view. Some transitions, especially key transitions, may not

reach the desired result as expected after the corresponding operation is executed in

practice. Therefore, we distinguish deterministic and nondeterministic fuzzy Petri

nets to reflect the possible random properties of the transitions at execution time.

Definition 7.2 Deterministic fuzzy Petri net(DFPN): A fuzzy Petri net(FPN) in

which each transition ti has a deterministic reasoning rule for local fuzzy variables,

=_ and therefore a fixed mapping between input and output local fuzzy variables.rp j

Definition 7.3 Nondeterministic fuzzy Petri net(NDFPN): A fuzzy Petri net(FPN)

in which there exists at least one transition t_ which has a random reasoning rule
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for local fuzzy variables. There is no fixed mapping between input and output local

fuzzy variables. The expected mapping of local fuzzy variables are known corre-

sponding to the mapping of input and output token values.

Definition 7.4 Random transition: A transition which has a random mapping be-

tween input local fuzzy variables and output local fuzzy variables.

A DFPN contains no random transition. An NDFPN contains at least one

random transition. The fuzzy Petri net generated from the AND/OR net is an

example of a DFPN; however, during the execution of a planned sequence, some

transitions might have random properties. For example, in Figure 7.1, if we assume

ts cannot always guarantee the cutting to the correct size, then ts becomes a random

transition. This modified fuzzy Petri net is an example of an NDFPN.

7.4.3 Planning and Execution on the NDFPN with ME Transitions

If we model some key transitions in the DFPN as random transitions, the pre-

vious planning strategy may not be suitable for searching sequences in an off-line

planning mode because the net has become an NDFPN. To approach this problem,

we assume that the reasoning function for local fuzzy variables of all random tran-

sitions are their expected reasoning functions, and the resulting NDFPN will thus

become a DFPN. We can use the planning procedure on the DFPN as before to get

the expected correct sequences.

For the sake of simplicity, we first consider the case that t_' is the only random

transition in the net, and retry of the operation t_' is chosen as the error recovery

strategy. After t_' is executed, a sensing transition defines a new local fuzzy variable

pj which determines the next firing through an ME transition. We assume an

expected sequence searched from a DFPN, of which all key transitions are assigned

the weighting factors for reasoning token values, is ,.qlt_S2t_...t_S_+l, where $l,
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Figure 7.6: Repeated trial error recovery structure.

,5'2, ..., 8,+1 are subsequences which do not contain any key transitions, and t_',

t_, ..., t_ are r key transitions. We assume that after we execute t_ during the

implementation of this task sequence, we may meet three possible cases:(Figure 7.6)

(1) Succeed: Based on the sensory verification operation, a 'correct' local fuzzy

variable is obtained after t_' is fired. We then go on executing the remaining part

of the sequence. The final actual sequence may be exactly the same as the planned

sequence.

(2) Retry and Succeed'. Based on the sensory verification operation, we do not

obtain a correct local fuzzy variable following t_'. The retiring of t_' is required.

This transition may be fired totally l(1 < l < M; M is a repair threshold) times.

The actual sequence which is executed may be(we consider sense and ti] as virtual

transitions for the sequence representation.)

s, t;$2t;... s,(t_')' s_+, ... g 8.+,.

(The specific mechanism for enabling this retry process using fuzzy values is dis-

cussed below.)

(3) Retry and Fail: After firing of t_'/'(1 _< l' < M) times, an unrecoverable

condition is detected for a soft object leading to global error recovery(firing of Sg,)
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or halt. For example, a certain soft object or the included soft component, may

need to be discarded and replaced by a new soft object. At this time, we assume

the execution of the remaining part of the sequence is stopped. The actual sequence

which is executed for this case will be

sl s2t . . . (eu s,, ).

The selection of M is sometimes an important factor to implement a sequence.

And the selection may depend on different criteria for different key transitions. If

M is chosen too large, a transition loop has to be executed many times so that

the threshold is reached and the sequence can stop. If M is chosen too small, the

possibility for local error recovery for some key transitions will be lower. Moreover,

sometimes the error is due to the hardware mechanisms such as machines, processing

units, and so on. We may have several alternative transitions available for an identi-

cal logical transition. In the previous example, we may have two cutting machines.

Any planned sequence may choose one of these two machines when a cutting tran-

sition is fired. When a cutting machine causes an erroneous state on the processed

part, we may need to try another cutting machine for local error recovery, rather

than continuing using the former one. In other cases, a more extensive alternative

sequence may be employed, or a more general global error recovery sequence may

be initiated.

Figure 7.7 shows the global and local alternative error recovery for the peg-

cylinder assembly example. Figure 7.7(a) illustrates a feasible sequence to finish the

assigned assembly task. Figure 7.7(b) depicts that a global alternative error recovery

sequence may be called when a threshold of times for retry could not remedy the

insertion error. Figure 7.7(c) shows that local alternative error recovery may be

necessary when a cutting error is sensed by a size sensor near the cutting machine.

The subnets of the fuzzy Petri net corresponding to Figure 7.7(a), 7.7(b) and 7.7(c)

are illustrated in Figure 7.8(a), 7.8(b) and 7.8(c). For the sake of simplicity, hollow
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(a)

Cm_

r=l

LOr_M. -_

Co) (c)

Figure 7.7: Error recovery for the peg-cylinder assembly example. (a) Planned

sequence. (b) Insertion error. (c) Size error.
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cylinder is not considered as a soft component at this time.

In Figure 7.9, we illustrate a Petri net representation of multiple alternative

transitions for a key operation. Local error recovery is shown using a retry strategy

here which enables alternate transitions through adjustment of local fuzzy variables.

t_', t_ and t_ are considered to be the transitions which accomplish the same subtask.

A sensing transition is introduced here to identify the token value in pj, and the

on-line selection of the following subsequences will depend on this sensed value.

Suppose originally, p_ contains a token of which the fuzzy value is a ;. The local

fuzzy variable of pi is p_O). After t_ is fired, pj contains a token with the fuzzy value

a j = a i x WF(t_), and the local fuzzy variable of p: is pj. Transition sense maps

the local fuzzy variable of the object to a sensing value, pj,. The weighting factor

of sense is 1. Therefore, O"j' -- O"j. If 01 _< pj, < 02, we will fire t'[: for local error

recovery. If we assume the reasoning functions for local fuzzy variables are the same

as global fuzzy variables, We may select an a and define

1
WF(ti_ ) = , s(t_) = WF(t[), 1 <i<3, a > O.

s(t ) + a

The new fuzzy value in pi will be

1 WF(t_). p!O) WF(tOP! °} plO).
P!') WF(t_) + a WF(t[) + a

After m times through this loop,

WE(t;) ),,_lpl0)< <pT)WE(t;) < ¥ "PI_') = ( WF(t'_) + a

, _(k-l) , p!O) is a strictly decreasing sequence.Therefore, p_k) g_ , ...

If we divide the p range [01, 0 _) to three subranges, [0 i, 0'), [0', 0"), and [0", 8:),

initially, pl °) E [8",02). After kl iterations, pl k_) will fall into [0',0"). We can

WF(ff) )k_plO) If after k2therefore fire t_ instead of t_' and at this time, p!k_) = (wf(o+_, " "

iterations for firing t_ we still cannot recover to a desired correct state, p!_+k2) will

m
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Figure 7.8: The subnets of the fuzzy Petri net of error recovery for the peg-cylinder

assembly example. (a) Planned sequence: tlt3tst6t4tstotlot¢tx2t13. (b) When an

insertion error occurs, and fist12 subsequence cannot remedy the error, a global

recovery sequence t2 will be used. (c) When a size error is found, a subsequence tern

will be used to remedy the error.
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Figure 7.9: Alternative local error recovery.

drop down to [01, 0') and at that time,

p(k,+k,) ( WF(t_) kl WF(t'_) k2 Ao)
i =,WF(t_)+a) (WF(t;)+a) t,i •

Following these iterations, we may succeed in recovery or drop down to the global

recovery or halt range, [0, 01). The above strategy, where p decreases with iterative

tries until it goes through all alternative ME transitions, provides a mechanism to

implement alternative error recovery.

More generally, we may define sequences which include transition loops for the

execution of certain transitions more than once:

Definition 7.5 Key-transition-loop sequence: A sequence which forms a cycle and

includes at least one key transition. The number of executions for the loop is

unknown prior to the execution.

From the above definition, we know that we cannot decide an actual exe-

cutable sequence in the off-line planning Stage for key-trans{t_0n:lo0p Sequences.

Even though during the off-line planning stage, we can enumerate all possible se-

quences which reflect all possible directions for the ME transitions, this may re-

quire too much computer storage and time to generate all possible sequences. Even
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though all sequences are generated, choosing among them also remains a problem

because we cannot ensure which sequence will be successful at the implementation

stage. Therefore, we will develop a suitable compact representation for feasible task

sequences as well as an efficient way to execute them.

Before we map the system DFPN to an NDFPN for execution, we can gen-

erate all feasible, complete sequences which have correct precedence relationships

for operations. These sequences are expected sequences in the mapped NDFPN.

When we add ME transitions, the expected sequences are modified to incorporate

alternative error recovery sequences. We assume actual sequences can be modeled

as key-transition-loop sequences.

We generalize each key transition tk to a key transition subsequence 7"_ because

sometimes several operations will be needed to accomplish a key task. An expected

sequence is generated from the corresponding DFPN as:

E(Sequence) = e ,'r.c T_ _ .o1,_ _,2 2 "'SIT &+, . . _ S,+_. (7.5)

We further assume all key transition subsequences are transition loop subsequences.

Therefore, the executable sequences will become

Sequence= S,(_v) + U 8'(_)+82(_") + U ..-U

_L ==

!

S, (T[)+_(_')+... _(T_")+Si+,... (T_")+8,.+1. (7.6)

where x + means executing x one or more than one time. Applying this sequence

representation to the real-time implementation, when we meet sign "+" in the se-

quence, further execution will depend on the current state of the system. The system

may go on executing the sequence, or re-execute the operations represented by the

transition loop subsequence, or stop executing the remaining part of the sequence.
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7.5 Error Recovery m

In the previous section, we described an approach to planning and execution

on the NDFPN with sensory verification. An unverified sensory state initiates either

a retry of the transition, or an-alternate procedure, depending on the Values of

the local fuzzy variables which occur. These procedures involving one transition

(perhaps one composite transition) are viewed as iocal error recovery procedures

since they do not involve 0ther key transitions or places in the net.

In the more general case, error detection may occur as part of a long sequence of

events within the plan, and the global error recovery may require either backtracking

and restart of the sequence, or selection of an alternative error recovery sequence.

In this section, we develop the formal definition of these strategies based on an

assumption of bidirectional, or brother, transitions which follow from the AND/OR

model of the original task. Two cases are considered. In the first case, there is

only one soft component in the net, and the retry of that sequence depends only

on returning to a known prior state where the process can be reinitiailized. In

the second case, there is more than one soft component and the retry becomes

more complicated since the intermediate states of other soft components must be

considered in the reexecution.

Alternative error recovery in the global case follows also from these definitions,

but is more difficult to generalize completely. The backtracking component of al-

ternative error recovery is identical to retry, but the execution of the alternative

sequence cannot be predicted since, in general, it depends on the intermediate val-

ues of all of the soft components as they were left after the backtracking procedure.

While access to the alternative procedure can be guaranteed by the methods defined

below, the success of the alternative procedure is not necessarily predictable since

the initial state is unknown prior to execution. This situation leads to an emphasis

on the design of the alternative sequence to properly account for the occurrence of
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E

a range of potential initial error states at the branch point. In a broad sense, this

approach leads to the development of design criteria for the alternative sequences

which would emphasize the independence of soft components between the alterna-

tives. This independence constraint would minimize the interaction between error

states of soft components in the primary sequence and new states in the alternative

sequence.

m

i

7.5.1 Error Recovery for One Soft Component

Definition 7.6 Brother transitions: When we map an AND/OR net to an ordinary

Petri net, each reversible arc will be decomposed into two transitions which are in

the opposite directions. We define these as brother transitions, t_ and 7.

Lemma 7.1 For any two markings m 1 and m 2 in an ordinary Petri net, which is

mapped from an AND/OR net, rn 2 --_ m 1 if rn 1 _+ rn 2.

L ,

D

Proof: Suppose m _ = (rnl,m_,...,m*,), and m 2= (m_,m],...,m2,).

(I) Suppose the arc in the AND/OR net isan IST arc,because rnI _5+m 2,we

obtain

1 2 = 1, = 0, = 0, = 1.mj = rrtj, 1 < j < n, j # jl, j # j2, and m _. 1 rn 2 2-- -- .h rnJ2 J_ rnj2

i.e., ti moves one token in Pjl to pj_. Therefore _ will move the token in PJ2 back to

PJl, which can be represented as m 2 -_ m 1.

(2) Suppose the arc in the AND/OR net is an AND arc, because m 1 -L m 2,

we obtain

and

1 2
rnj = rnj, 1 <_ j <_ n, j # jl, j # j2,. ..,j # jk,j # jk+l.

rn 1. = 1 1 m 1. =0; andre2 = 2 2 O, rn 2- = 1,j_ mj2 = ... = mjk = 1, _+, j, mj2 = "'" -- mjk = .Tk+_
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or
y-

ml = 1 m I. =0, m 1. =1; and m_ = m_ - = m 2. =1, m 2. =0.
Jl rnJ2 "-" "'" "-- Jk Jk+l Jl J2 .... Jk Jk+l

i.e., ti delete the tokens in PJl, PJ=, ..., PJk, and add one token in Pik+l, or, delete

the token in PJ_+1 and add one token in PJl, PJ2, ..., Pik, respectively. Therefore

will delete the token in Pih+l and add one token in pjl, pj_, ..., PJk, respectively, or,

t_ will delete the tokens in pj_, Pj2, .--, PJh and add one token in PA+_, which can be

represented as m 2 _-, m I.

Q.E.D. o

Definition 7.7 Brother sequence: If a sequence S is tit2.., tl, the brother sequence

of S, which is written as 5, is _ t-'_'7-1.., t_.

Theorem 7.1 For any two markings m 1 and m 2 in a reversible ordinary Petri net,

which is mapped from an AND/OR net, m 2 _ m I if m I _ m 2, where 5' is a

transition sequence of tlt2...tl, l > 1.

Proof: Using the mathematical deduction method:

1. If I = 1, using Lemma 7.1, we conclude that the theorem is correct.

2. Suppose when 1 = k and if the marking m 2 is reachable from m 1 by firing

S = tlt2...tk, then m 1 is reachable from m 2 by _ = tk tk-1 ..._.

3. When l = k + 1, the marking rn 2 is reachable from m 1 by firing S' =

tit2.., tkt_+x. We assume the marking m _ is reachable when we fire Qt2... t_ from

the marking m I, and m 2 is reachable from m' by firing tk+_. We know from Lemma

7.1, m _ is also reachable by firing _ from the marking m 2. And again using the

above supposition, rn I is reachable from m t by firing t_ tk-1 ... t_. Therefore, m I is

reachable from m 2 by firing tk+l tk..._ = _.

We conclude that the initial marking is reachable by the brother sequence

from the final marking, which is reachable by the original sequence from the initial

marking.
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7

NDFPN

1

t v'

t !

S.V.

Figure 7.10: An example of NDFPN with ME transitions.

Q.E.D. c_

As a mechanism to initiate error recovery, we add a sensing transition, for

which the weighting factor of the reasoning function for the local fuzzy variable is a

random value. An example of an NDFPN with ME transitions is shown in Figure

7.10. In this example, the key transition t" remains a constant transition. Place p_

will therefore receive an expected fuzzy token after t" is fired and the local fuzzy

variable in p2 is fixed. We then fire the s.v.(sensor verification) transition, which

is assumed to be a random transition, to verify the real local state of pu. The new

local fuzzy value of the object represented by P2 is thus dependent on the current

weighting factor of the transition s.v. The following execution of sequences through

ME transitions will depend on the current local fuzzy value associated with P2. If

the state is acceptable, the originally planned sequence continues to execute. If the

state is not satisfied but may still be reached after some modification is made, we

fire t _' and fire the s.v. transition once more. If an error, which cannot be recovered

locally, is detected, we may go back to the initial state and replace the corresponding

soft component.

The following theorem reasons about the recovery sequence from the original
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task sequence.A definition and alemmaareshownfirst to introduce somenotation.

Definition 7.8 Token defuzzifying function f2p(Sg):

1

1

= (7.7)

where

Definition 7.9

[ 1 ifai#e,

I e otherwise,

l<i<n.

Transition defuzzifying function t,( r, ) :

t,((WF,, WF=,..., WFm))=
m

(7.s)

A .&.
Lemma 7.2 If S ° k Sff, then nip(S °) s tp(S_) when r, = at(r,), where =

means "is assigned the value of".

i
1

i

[]

1

m

Proof: Suppose $ = tit2.., tk. Since the weighting factors for all reasoning rules

_' tt(r,), from S ° 2h S_, S ° zx tp(So) andfor token values are defuzzified as r, = --

WF1 = 1, we obtain Sg* _ f_p(Sg*). Using the mathematical deduction method, we

can obtain S_ g tp(S_), where 1 < i < k. Therefore, Sff _- f_p(Sff). We conclude

that f_p(S °) s 9tp(S_).

Q.E.D. []

Theorem 7.2 If S_g Sff, where S _ = S_t_S2t_g...Stt_, then flp(S_) tip(S °)

,', $2when r, = f_,(r,), where = _ _t tb_-, ...__2 E.

51 & S x

Proof: Since S ° ---* S ff ra = at(r,) and according to Lemma 7.2, we get ap(S °)

flp(Sk), where S 1 V7"_" vT"ff ._+= SltltlS_t2t2... $3'{. Using Theorem 7.1, we obtain ftp(S_) s'

tp(S°), where

1

N

1

1

1
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br_

Using Lemma 7.1,

therefore,
m

1<i<l-1.

We can delete all pairs of ,,9t it i and the sequences of states the system will follow

Therefore, we conclude that f_p(S_) s_ f_r,(S°), where S 2 =

Q.E.D. []

The following algorithm states the procedure discussed so far. We may observe

that when we follow the global recovery sequence to replace the incorrect soft com-

ponent, we need not go back to the initial state. The replacement can be performed

just before the first key transition corresponding to this soft component. The sixth

step of the following algorithm implements this observation.

Algorithm 7.1 Ezecution of a Task Sequence with Sensory Verification and Error

Recovery(One Soft Component}

Input: The correct task sequence set and one element S = S_t_S2t_... t_S,+_,

from this set, where t_', t_, ..., t_ are s key transitions on the soft objects, the

initial global fuzzy state S °, and the DFPN from which S is generated.

Output: None.

By-product: The ezpected task is efficiently executed, or recovers to the initial state

should an unrecoverable error occur.

1. Add sensory verification transition s.v.i and one or more t_" to each key transition

t_' as shown in Figure 7.10. Set the weighting factor of r,, for each new t_" and

s.v.i as 1. M = O.
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$. Execute the next transition in the sequence until we meet a key transition t[,

fire it, and go to 4.

3. If we reach the end of the sequence, exit.

4_. Fire the sensory verification transition s.v.i, get the token of new local fuzzy

variable pj in output place pj.

5. If pj 6 [0, 89) and M reaches an upper bound, fire _ _ _..._, notify the

high level controller and exit.

.

,

1 2
8. If pj 6 [Sj,Sj), and if for this key operation, there

fire t[' and go to 4, else, go to 10.

9. Otherwise, go to 2.

If pj 6 [0,8_), and there is no alternative global sequence, or, all alternative

global sequences have been tried, WF(t_i i= 1/l-I,=xp,, are U r,

M = M + I, WF(t_ = l, go to 2.

If pj 6 [0,O_), and there is a next alternative global sequence, WF(_) =

i
1/n,=, P,, fire _'i i_'-,..._, M = M+I, WF(_) = 1, choose the alternative

sequence and go to 2.

is no alternative transition,

10. Choose an alternative transition for this key operation to fire, and then go to

4.
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7.5.2 Error Recovery for Multiple Soft Components

Multiple soft components are often present in a robotic workcell. A fuzzy

marking and representation strategy for multiple soft components during different

stages of operations such as assembly, disassembly, and IST, has been discussed in

[12, 20]. In this subsection, we show how one of the soft components recovers from
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an intermediate fuzzy state, if error conditions are detected for this component or a

subassembly which contains this component. The method for execution of the task

sequence with sensory verification and error recovery for this case is the same as the

single soft component case discussed in the last subsection.

For a system which contains one soft component, when the system recovers

from errors back to the initial state and the component is replaced by a new com-

ponent or repaired, the original task sequence could be re-executed without any

modification. For a system which contains multiple soft components, when the sys-

tem goes back to the initial state and one soft component is replaced, the states

of other soft components are in their intermediate fuzzy states. If we re-execute

the same task sequence which was planned originally, we are expected to reach

another failure state. To solve this problem, we may add a sensory identification

procedure before each key transition. In the following theorem, we propose an al-

ternative method to automatically modify the original task sequence after one error

component is repaired or replaced.

Definition 7.10 Sequence masking operation '--": A set of transitions A = {tl, t2,

..., t,_} are deleted from a sequence of transitions, S, i.e., we assume S = SltlS2t2...

tkSk+x, where Si is a subsequence of 0 or more transitions which does not contain

tj, l<i<k+l, l_<j<n. Therefore,

S - A = $_t_S2t2... tkSk+_ -- {t_, t2,..., t,_} = S_$2... Sk+_, 1 < k <_ n. (7.9)

Definition 7.11 Sequence concatenation operation "+": Suppose

S_ = t_t_.., tr, $2 = tr+at,+2.., t,,,

then

S_ + $2 = t_t2.., tr + t_+_t_+2 ... t,, = t_t2.., t_tr+tt_+2.., t,_. (7.1o)
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Definition 7.12 Brother transition set: Given a transition set A, A = {tl,t_,... ,t,},

its brother transition set, which is denoted by A, is A = {tl, t2,... ,t--_}, where _ is

the brother transition of ti, 1 < i < n.

Definition 7.13 Complete transition set AC: Given a transition setA = {tl, t: .... , t,},

its corresponding complete transition set A c = A IJ A = {q, _, t2,_,..., t,_,_}.

Theorem 7.3 If S = tlt_...t", A _ = {tl,_,t2,_,...,t,,_}, then

:_-A¢=_-A c. (7.11)

Proof: (1) If t i _t A c, then t i _t A ", for 1 < i < n. Because if we assume t' E AC,

then t i = tj or t i = _, both of which will lead to a contradiction that t i 6 A¢.

Therefore,

s_ =-g =-g_ zxc.

(2) If there exists at least one transition of t i which belongs to At For the sake of

simplicity, we assume {t 1, t2,..., t"} f'l A¢ = {tJ} and tj = ti. Then,

I
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S - Ac = tit 2 ... tJ-*t_tJ+ * ... t" -- A, = t*t 2 ... tJ-ltJ+ 1 ... t"
m
i

= t-x t,,----'Y ...t-7-gY t-Yz-M...-i f = _ Fc'f...t-7ii tJ tJ-*..._ - A:

= tats...tJ-_otJ+*...t" - A c = _- A _.

Q.E.D. []

Theorem 7.4 If _ s S_, S = tit2.., t t' and when S is executed, it stops at t i,

1 < i < k. Then, after error recovery to the initial state and the jth soft component

is repaired or replaced, the resumption to the intermediate state where the failure

happens, is guaranteed, if the task sequence from the initial state after recovery is

modified as

s' t't ° .....= .. ,_,U/',++,U U/,,;)+t'+'t .t", (7.12)
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where Ap represents the set of feasible key transitions for the pth soft component,

l<p<r.

Proof: Since S ° s S_, and S = tlt2...ti...t k, which stops at t i, according to

Theorem 7.2, the recovery sequence is then Sr = d St Sl-1 ... _ _'1, where

_t t_-I .__2_1 t i-' t i-2 _i-(AIUA_U...U Ac _ _ ".. = ... ;_,U%UA,+,U ..U A,_).

When we reach the initial state, we don't fire any key transition, therefore, the

fuzzy state for each soft object does not change. After we replace the jth soft

component which is not processed, we should process it to its desired intermediate

state. Therefore, the subset of the key transition set for jth soft component is retired

and the modified sequence is

s'= t-_FT Fa...iT_ (A_U A_U... U A__,UA_+,U.-.UA, _)+ t'+'t'+_...t"

= t-_-_-,t,-_...-_-(_ U A_U ...U A__,UA;+, U... U A;) + t'+'t'*_...t"

= t't_.., t' - ("i U"_ U... U";-, U";+, U... U"_) + t'+'t'+_..,t".

Q.E.D. m

7.6 An Algorithm for Generating an Executable fuzzy Petri Net

We have already discussed the basic theory of reasoning in a fuzzy Petri net

and its application in error detection and recovery. After the planning stage, we

may get a 'script' of operations sequences for execution and when an error occurs,

we may refer to the net representation and automatically find a recovery sequence to

get back to a previous state, and then follow a possibly modified sequence to recover

to the interrupting state. Sometimes because of the high probability of errors during

the implementation of a sequence, we are required to create an ezecutable fuzzy Petri

net, so that more flexibility of alternative operations sequences and robust on-line

selection of enabling transitions can be incorporated. In this approach, the same
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fuzzy reasoningrules for rp can be created with appropriate weighting factors. The

first step for creating an executable fuzzy Petri net is to find a feasible, complete,

and correctly ordered sequence from the original system fuzzy Petri net. The next

step is described by an algorithm shown below.

Algorithm 7.2 Generation of an ezecutable fuzzy Petri net for implementation of

a robotic task(We assume for this discussion that one soft component exists in the

system, but this can be generalized.)

Input: A fuzzy Petri net generated from an AND/OR net for the system, a feasible,

complete, and correctly ordered task sequence, tit2.., t,,, searched from the net.

Output: An executable fuzzy Petri net.

I. Suppose (i) all weighting factors of rp for key transitions are WF1, WF2, ..., WF_;
?

(ii) all thresholds(ranges of real numbers) for m transitions in the system

axe 01, 0_, ..., 0,_; (iii) tq, ti2, ..., tit are key transitions in the sequence,

il < i2 < ... < iv; (iv) Let L be the initial token value of the soft object(if

r = 0, then L = 1.0). M = 0. Initl = 1. Init2 = L. H = 1.0 ifr = 0,

otherwise, H is assigned an integer.

_. M=M+I. IfM_< r, go to5.

3. For all tj, Initl < j < n, Oj = [Init2, H).

4. For any transition tj which has no threshold, if its brother transition _ has

threshold 0, assign 0 to tj, otherwise, assign [L, H) to tj. Exit.

5. For all tj, Initl < j < iM, Oj = [Init2, Init2 x WFM).

6. Initl = iM Jr 1. Init2 = Init2 x WFM. Go to 2.

In real-time execution of the operations sequence on the executable fuzzy Petri

net, we need to model sensor and sensing operations in the net to handle uncertainty.
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After sensing transitions are added to the net, the outcome on-line local fuzzy values

t'(S_), where t, is a sensingdepend on the detected sensor value mapping, i.e., rp rp

mapping function, and S_ is a sensed value.

Two types of sensing are used in the fuzzy Petri net. One is called discrete

sensing, and the other is called continuous sensing. Discrete sensing indicates that

i andi and r_(S_) take on discrete values, while continuous sensing means that rprp

r_(Si) take on continuous values. After we obtain an executable fuzzy Petri net

using the above algorithm, we add sensing transitions near some key transitions

and after each key transition is fired, we fire the sensing transition, and let the local

fuzzy variables of the sensing output decide the following enabled transitions. Then,

given the initial state, a sequence will be automatically followed to reach the final

state and perform error recovery operations or subsequences if necessary.

A simplified version of the peg-cylinder assembly system(without robot), its

executable fuzzy Petri net, and the net with discrete sensing and continuous sensing

added, are shown in Figure 7.11. In Figure 7.1lib ), cut, lubricate, and insert(or

followed by several loops of remove, insert) is the only feasible, complete, and correct

sequence found on-line. In Figure 7.11(c), after the 'cut sensing' transition is added,

we assume 'cut' transition having a weighting factor of 1 and 'cut sensing' transition

having a continuous sensing value 1 < WF(Si) < 2. Depending on this value, a

repeated trial error recovery may be necessary if the peg is not cut to the right size.

For the 'insertion sensing' transition, if the insertion operation succeeds, a final

state will be reached that no transition is enabled anymore. Otherwise, a 'remove'

transition may be fired to invoke a global error recovery subsequence.

7.7 Examples

In this section, we show two examples, one of which is oriented to alternative

local error recovery, and the other to alternative global error recovery. When a
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0: [0.2,0.6_ LUBRICATE

INrT:0._

(a) Co)

0: [0.2,0.6_ LUBRICATE

cLrr s_siNG _]
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6:[0.6,1) I:IFNOT INSERTED

INSERTION SENSINO 2: IF INSERTED

(c)

Figure 7.11: An example for the executable fuzzy Petri net. (a) Petri net example for

peg-cylinder assembly system(without robot). (b) The executable fuzzy Petri net(no

sensors). (c) The net with discrete sensor(global error recovery) and continuous

sensors(repeated trial error recovery).
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Figure 7.12: An error recovery mechanism for ts in Figure 7.1.

local recovery procedure fails to recover the error after a finite number of retries, a

backtracking path will be automatically followed to an earlier stage of the task or

the initial state, then, the original sequence will be executed again, or, an alternative

sequence will be called to replace the original one.

7.7.1 Example of Alternative Local Error Recovery

In this subsection, we show sensor-based alternative error recovery for the

example shown in Figure 7.1, where a fuzzy Petri net representation is illustrated.

As we see from Figure 7.1, ts is a key transition with a weighting factor 2. Based

on the algorithm for ezecution of task sequence with sensory verification and error

recovery, we add an s.v. matching transition, and cml, cm2 transitions for local

error recovery, cml corresponds to the first cutting machine and crn2 corresponds

to the second cutting machine. The modified partial fuzzy Petri net is shown in

Figure 7.12. Notice that it's not necessary to add a special transition for decreasing

p because in this case, each unsuccessful matching will automatically decrease the

fuzzy value.

Initially, the prime token value _r1° = 0.1, WF5 = 2, a 1_ = 2 × 0.1 = 0.2, and
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the local fuzzy variable p,2 = o''2. The three ranges [0, 0'), [0', 0 2) and (0 2, 0 3] _re

[0, 0.12), [0.12, 0.18), [0.18, 0.2], respectively, for p12 in p12. [01, 0 _) is divided into two

subranges, [0.12, 0.15) and [0.15,0.18), so that the alternative error recovery with

t_9 is represented astwo cutting machines can be implemented. For transition t19, rp

p'_ = p_ x WF,9 x (1 - match) + match x WF19 x 0.2,

match = 1 if WF19 > 0.94, otherwise, match = O. Moreover, WF2o = WF21 = 1.

We list three possible cases of derivations Of sequences as follows:

Case 1: The weighting factor of random transition, matching, is WF19 = 0.95.

Thus, p12 = 0.2 x 0.95 = 0.19 E (02, 0a] and the sequence succeeds at this point.

Case 2. WF19 = 0.85, p12 = 0.2 x 0.85 = 0.17 E [01,02). cml will be

fired(cutting machine 1 is used again) and p12 = 0.17. If again, WF19 = 0.85,

Pz_ = 0.1445 E [0.12,0.15). cm2 is fired at this time and we suppose WF19 now

becomes 0.98. Correspondingly, p12 = 0 + 0.98 x 0.2 = 0.196, therefore, the local

error recovery succeeds in this case.

Case 3. At the last step of the above case, if we assume WF19 is still 0.85.

Correspondingly, p12 = 0.85 x 0.1445 - 0.1226. crn2 is fired again and we suppose

WF19 is still 0.85, then p12 - 0.1042 E [0, 0.12). Therefore, a global error recovery

back to the initial state is necessary and the peg should be replaced.

7.7.2 Example of Alternative Global Error Recovery

Suppose we have three blocks, A, B, and C. The robot is required to assemble

these blocks and the final configuration for this task is shown in Figure ?.13(a). The

AND/OR net representation of all feasible components, A, B, and C, all feasible

subassemblies, AB, BC, and AC, and the assembly, ABC, and their geometric

relations, are illustrated in Figure 7.13(b). For the sake of simplicity and symmetry,

we assume the assembly task should start from putting A on the platform first.

Of course, more complicated cases could also be considered and the generalities of
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(a) Co)

Figure 7.13: (a) The final configuration of the assembly of blocks A, B, and C. (b)

The AND/OR net representation of this assembly task.

the following discussion will not be lost. Using the mapping algorithm, we obtain

a corresponding Petri net. Figure 7.14 shows a subnet of this Petri net which

does not include subassembly BC and the related transitions. In this net, t6 is a

nondeterministic transition in the sense that we don't know whether the assembly

operation of AC and B could be accomplished successfully because of the imprecise

distance between A and C when AC is obtained.

We may consider AC as a soft object and the distance between A and C in the

subassembly AC as a soft parameter. We also consider t6 as a random transition

with a weighting factor WF(t6). The local fuzzy values for AC and ABC are PAC

and PABC, respectively, and the firing rule rp for t_ is

PABC = PAC × WF6 × (1 - match) + match × WF6 x 1,

where match = 1 if WF6 >. 0.98, otherwise, match = O. All other transitions in the

net are deterministic and having weighting factors of 1. The firing rules of these

transitions are the same as shown in (7.1), (7.2) and (7.3).

There are four possible task sequences for this example, i.e., t2tT, t3Q, t2tlt3t6

and t3t4t2t_. Suppose we choose t3t6 to execute. If the distance between A and C

is too small to fit B inside them, t6ts will be fired several times. If the random
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i

i

t5 t8

Figure 7.14: The subnet of the Petri net representation of the example of assembling

A, B and C.
M
ill

weighting factor for t6 is below 0.98 for several consecutive times, the local fuzzy

value in AC will strictly decrease and eventually force a global error recovery of

this sequence, i.e., t4 will be fired and AC decomposed. Then, either an alternative

planned task sequence, t2tr, or, the originally chosen sequence, t3t6, is reexecuted.

In the latter case, C is reassembled with A and the distance between A and C at

this time may be adjusted and the sequence may be successful. Otherwise, if several

trials of the sequence are performed and it still fails, an alternative task sequence

will be forced to execute in place of the original one by the system supervisor.

Figure 7.15 visually shows the error recovery procedures discussed above. A partial

executable fuzzy Petri net, with continuous sensing for assembling AC and discrete

sensing for assembling ABC, are shown in Figure 7.16. Because there is no soft

component existing in the system, we assign [1,2) to each transition and the initial

tokens are all 1 based on the algorithm shown in Section 7.6.
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(a) (b)

(i)

Figure 7.15: The possible errors and the corresponding recovery procedures for the

task to assemble A, B, and C. (a) Put A. (b) Put C. (c) Put B between A and C

and fails. (d) Same as (c). (e) Same as (c). (f) Remove B. (g) Remove C. (h) Put

C, possibly with distance adjusted. (i) Follow an alternative sequence and put B.
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The fuzzy Petri net representation for ABC assembly tasks.
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7.8 Conclusion

In this chapter, we introduce a novel sensor-based error recovery strategy based

on the fuzzy Petri net representation of robotic workcells and the fuzzy property

of sensory verification. Fuzzy Petri nets are used to model fuzzy process state,

including uncertainty of local parameters and a global fuzzy variable associated with

'degree of completion'. Using fuzzy Petri nets, we can enforce required precedence

of operations for a set of 'key' operations, and represent 'soft' objects which have

changing properties or internal states.

We have shown in this chapter an approach to implementation of embedded

error recovery strategies which change the precedence of operations by sensing fuzzy

values. The fuzzy information propagates and resequences operations to accomplish

task goals. When the expected information is obtained, the sequence will not be

altered. However, when an error is detected, the local recovery loop or the global

recovery path will be followed to guarantee that correct fuzzy degrees of completion

of soft objects are reached. After the global recovery is finished, different sequences

for re-execution are proposed for the case of a single soft component, and that of

multiple soft components, respectively. Fuzzy values discussed in this chapter are

important for searching in the planning stage as well as for sensing, verification,

detection, and reasoning about sensory conditions in the execution stage.

Future directions of this work will concentrate on the applications of the theo-

ries proposed in this chapter to more generalized robotic systems and on the decom-

position of high level task sequences into lower level motion and execution sequences,

so that a hierarchical error detection and recovery mechanism may be incorporated.

Sensor-based control and sensor-based verification and error recovery can be inte-

grated, and sensor resources can be coordinated in the whole robotic system. Such

a sensor-based robotic control workcell would be more flexible, adaptive, and fault-

tolerant and would reduce the effort required for implementation of new tasks.



CHAPTER 8

CONCLUSIONS

8.1 Summary

The principal contribution of this thesis is to task sequencerepresentation,

planning, and error recoveryfor robotic systems. Both plan generation and plan

executionare modeledby Petri netsand fuzzy Petri nets, which providean efficient

methodology to simulate and analyze the properties of the systems. The fuzzy

Petri net is shownto bea promising tool to incorporate uncertainty into the system

model. This treatment of modeling uncertainty using the fuzzy Petri net and its

applications to robot task planning and sensor-basederror recoveryhasprovided a

framework for analysisand design in many problem areas. The work presentedin

this thesisshouldalso stimulate further interest and researchin this direction.

Using the methodologyand theory presentedin this thesis,weareable to rep-

resent, plan, and executefeasibleoperations sequencesfor a specific robotic task.

The input to our planner is the descriptionsof the componentsand geometricre-

lations amongcomponents,feasibleoperations, initial and final systemstates,and

the working environment. We could use this information to build up a systemrep-

resentation for robotic task sequences.This model is then mapped to a Petri net,

which will be decomposedto lower level representationsbasedon the specifications

of the execution-leveldevices. On any level of decomposition,we may searchone

or more feasiblesequencesand may want to analyze the properties of the system

including safeness,iiveness,and reversibility. After fuzzy Petri nets are introduced

to representuncertainty and incompletenesswith the system model,we are able to

reduce the searchspacefor sequencesin the Petri net model by marking subgoals

using global fuzzy variables,and we can monitor the degreeof completion during
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the planning process for verifying and pruning infeasible partial sequences.

One major approach in this work is that three kinds of fuzzy variables are

incorporated in the fuzzy Petri net model and the reasoning mechanisms and fuzzy

state representation could be built into the fuzzy Petri net. A local fuzzy variable

is used to characterize lower level mechanical and geometric parameters of a device

or object in the robotic system, a fuzzy marking variable is introduced to denote

the uncertainty that an event occurs, and a global fuzzy variable characterizes the

degree of completion for a global task. In particular, fuzzy reasoning rules for three

kinds of operations, assembly, disassembly, and IST operations derived from the

robot assembly system, are developed to reason about the global fuzzy variables.

Mutually exclusive transitions are used to select and reason about the execution of

robotic actions on-line based on both local and global fuzzy variables. Different error

recovery strategies including retrying error recovery, local alternative error recovery,

and global alternative error recovery are shown to be efficient and reliable to execute

a task sequence under uncertainty.

Some basic cases of fuzzy Petri nets are analyzed based on local fuzzy variables

and fuzzy marking variables. In analyzing the case of transition firing depending on

input local fuzzy variables, a subclass of the case was found to satisfy the liveness,

safeness, and reversibility under a set of conditions. One advantage of using local

fuzzy variables to represent the state of execution-level devices including the robot

is that the theory of fuzzy sets and fuzzy mathematical operations can be directly

used to compute and analyze the uncertainty using fuzzy numbers.

In this research, the efficient, reliable, and robust planning and execution of

robotic task sequences are guaranteed through the hierarchical task decomposition

and implementation of error recovery strategies incorporated in the Petri net. Our

results represented in this thesis provide a novel methodology and applications of

robot task planning with uncertainty.

m
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8.2 Future Work m
m

A number of research directions deserve further consideration beyond the re-

sults presented in this thesis.

• The selection and evaluation of all feasible task sequences based on the AND/OR

net and Petri net representation of task sequence plans is an important exten-

sion to the work done here in task sequence planning. In particular, for the

selection and execution of parallel operations during the planning process one

needs to analyze all feasible enabled trans!ti0rj_s in terms of resource conflicts

and other factors including timing, cost, flexibility, and reliability. Another

possibility is to execute in parallel an error recovery sequence and some op-

erations in the original sequence when the error is independent with these

operations. Analysis of uncertainty with parallel execution of operations also

needs to be performed.

• The synthesis of planning strategies under uncertainty within a generic hierar-

chical structure for decomposition may be used to handle errors which appear

during the decomposition of a task sequence towards the final net. For exam-

ple, the working environment of the execution of the sequence may be changed

not by sensing and manipulation, but by other random factors. Thus, a sen-

sory verification procedure might be necessary to check some unsafe substate

before the substate is processed by the current operation.

• A planning for planning problem may be important to ensure the property

of reversibility of the final net during decomposition. Sometimes, we need to

recover from an error to the initial state while retaining some lower level plans

for future retiring and discarding of others. The coordination and scheduling

for processing these plans are incorporated into the recovery procedure. When
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a sequence is reinitiated from the initial state, we should guarantee state reser-

vation for those waiting components and execution of unchanged plans which

might be verified.

• More general cases of fuzzy Petri nets and their properties should be explored

and analyzed when fuzzy Petri nets are used to model more complex systems.

It might be useful to look at the interrelationships among the three kinds

of fuzzy variables during fuzzy reasoning by rules. More detailed lower level

representation and integration of these three variables are needed to expose

the necessity to use them in modeling uncertainty. Other forms of non-fuzzy

probabilistic reasoning could also be incorporated within this framework.

• The design of reasoning structures within Petri nets is another important

issue to design a fuzzy Petri net. Many learning techniques can be explored

to generate a rule base. Neural networks provide a good method to represent

and train these rules. The mapping from real sensory data to fuzzy numbers

for reasoning in the fuzzy Petri net is also an interesting topic.

• Fuzzy Petri nets proposed in this thesis should be applied to modeling, anal-

ysis, and simulations of other related areas such as knowledge representation,

knowledge reasoning, design of expert systems, discrete event systems, flexi-

ble manufacturing systems, scheduling, and other kinds of applications which

need to handle uncertainty. The feedback from applications and implementa-

tion may bring revisions and enhancements to the theory of fuzzy Petri net

initiated in this thesis.
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